マサチューセッツ工科大学(MIT)の研究チームは、ディープラーニングに必要とされる複雑で多量の計算を光コンピューティングを使って高速化、低消費電力化する技術を開発したと発表した。まだ概念実証の段階だが、原理的にはディープラーニングの計算時間を大幅に短縮でき、従来のコンピュータに比べて消費電力を1/1000程度にできるという。研究論文は光学分野の専門誌「Nature photonics」に掲載された。 ニューラルネットワークに基づくディープラーニング技術は、画像認識や音声認識をはじめ、医療データベースの中から診断に利用できるパターンを見つけ出したり、膨大な化学式を探索して新薬を創出するなど、さまざまな分野で使われるようになってきている。 しかし、膨大なデータサンプルを学習する過程では時間とエネルギーを消費する大量の計算を行う必要がある。ディープラーニングで多用される計算は、主に行列同士の掛け