タグ

Rに関するpopoonのブックマーク (6)

  • CodeIQについてのお知らせ

    2018年4月25日をもちまして、 『CodeIQ』のプログラミング腕試しサービス、年収確約スカウトサービスは、 ITエンジニアのための年収確約スカウトサービス『moffers by CodeIQ』https://moffers.jp/ へ一化いたしました。 これまで多くのITエンジニアの方に『CodeIQ』をご利用いただきまして、 改めて心より深く御礼申し上げます。 また、エンジニアのためのWebマガジン「CodeIQ MAGAZINE」は、 リクナビNEXTジャーナル( https://next.rikunabi.com/journal/ )に一部の記事の移行を予定しております。 今後は『moffers by CodeIQ』にて、 ITエンジニアの皆様のより良い転職をサポートするために、より一層努めてまいりますので、 引き続きご愛顧のほど何卒よろしくお願い申し上げます。 また、Cod

    CodeIQについてのお知らせ
  • 競馬の解析をガチでやったら回収率が100%を超えた件 - stockedge.jpの技術メモ

    記事のタイトル通り、競馬で回収率100%を超える方法を見つけたので、その報告をする。 ちなみに、この記事では核心部分はぼかして書いてあるため、読み進めたとしても「競馬で回収率100%を超える方法」が具体的に何なのかを知ることはできない。(私は当に有効な手法を何もメリットが無いのに公開するほどお人好しではないので) 当に有効な手法を見つけたいのであれば、あなた自身がデータと向き合う以外の道は無い。 ただし、大まかな仕組み(あと多少のヒントも)だけは書いておくので、もしあなたが独力でデータ解析を行おうという気概のある人物なのであれば、この記事はあなたの助けとなるだろう。 ちなみに、これは前回の記事の続きなので、読んでない方はこちらからどうぞ。 stockedge.hatenablog.com オッズの歪みを探す さて、前回からの続きである。 前回の記事のブコメで「回収率を上げたいならオッズ

    競馬の解析をガチでやったら回収率が100%を超えた件 - stockedge.jpの技術メモ
  • R言語 - テキストのネガポジ度を分析する - Qiita

    はじめに 任意のテキストファイルにどのような特性があるのか?そのテキストファイルに、ネガティブな発言が多いか、それとも、ポジティブな発言が多いかの傾向をざっくりと把握するには、ネガポジ度を分析するとよいです。このTipsでは、とある組織のウィークリーレポートを使って、その内容にどのような特性があるのかを分析してみます。手順としては、①ウィークリーレポートをRMeCabで形態素解析後、②単語感情極性表(注1)からスコアを算出し、③ネガポジ度を三次元円グラフで描画します。単語感情極性とは、その語が一般的に良い印象を持つか(positive) 悪い印象を持つか(negative)を表したものです。例えば、「良い」、「美しい」などはpositiveな極性、 「悪い」、「汚い」などはnegativeな極性を持ちます。 # 三次元円グラフライブラリを読み込みます library(plotrix) #

    R言語 - テキストのネガポジ度を分析する - Qiita
  • R vs Python:データ解析を比較 | POSTD

    主観的な観点からPythonとRの比較した記事は山ほどあります。それらに私たちの意見を追加する形でこの記事を書きますが、今回はこの2つの言語をより客観的な目線で見ていきたいと思います。PythonとRを比較をしていき、同じ結果を引き出すためにはそれぞれどんなコードが必要なのかを提示していきます。こうすることで、推測ではなく、それぞれの言語の強みと弱みの両者をしっかりと理解できます。 Dataquest では、PythonとRの両方の言語のレッスンを行っていますが、データサイエンスのツールキットの中では両者ともそれぞれに適所があります。 この記事では、NBA選手の2013/2014年シーズンの活躍を分析したデータセットを解析していきます。ファイルは ここ からダウンロードしてください。解析はまずPythonとRのコードを示してから、その後に2つの異なるアプローチを解説し議論していきます。つま

    R vs Python:データ解析を比較 | POSTD
  • Rを使うなら知っておきたいチートシート群 - Qiita

    Rにもチートシートはある。 なかでもRStudio社のチートシートは使い勝手が良い。 RStudio社のチートシートは知っている人にとっては当たり前の情報だが、知らない人は当に知らないことを最近知ったのでQiitaにも記事を残しておく。 できればこの記事をストックするのではなく、以下のURLをブックマークしてほしい。 https://www.rstudio.com/resources/cheatsheets/ 以下に各チートシートの簡単な紹介とURLを示す。 データハンドリング いわゆるデータの前処理。Data Wranglingとも言う。 dplyr、tidyrを使った例が図入りで書かれている。必見。 https://www.rstudio.com/wp-content/uploads/2015/02/data-wrangling-cheatsheet.pdf なお、データハンドリング

    Rを使うなら知っておきたいチートシート群 - Qiita
    popoon
    popoon 2015/09/12
  • 「Rプログラミング入門」をPythonで書き直す - めもめも

    何の話かというと RStudioではじめるRプログラミング入門 作者: Garrett Grolemund,大橋真也,長尾高弘出版社/メーカー: オライリージャパン発売日: 2015/03/25メディア: 大型この商品を含むブログを見る 某編集長から上記の書籍が送られてきて、「これは、次はRのを書けという指示か????」と勘ぐってみたものの、筆者はPython派なので、「これと同じことは全部Pythonでもできるんだよー」と言いたくなって、このエントリーを書き始めた次第です。ちなみに、この、Rの入門書としてはよくできているので、これのPython版ができたら、それはそれで役に立つ気もします。 なお、このエントリーでは、あくまでコードの部分だけを書き直して、RとPythonの差異についての説明だけを行ないます。コードそのものの説明については、上記の書籍をご購入ください。 環境準備 IP

    「Rプログラミング入門」をPythonで書き直す - めもめも
  • 1