※この記事には映画「The Social Network」のネタバレがそれなりに含まれています.これから映画を観る予定の方は逃げた方が賢明です. 最近ブログで宣言した通り,入門 自然言語処理を読みつつPythonのNLTK(Natural Language ToolKit)を使った自然言語処理について勉強中.入門 自然言語処理はPythonをロクに触ったことがない私でもちゃんと理解しながら読み進められるようになっているのが嬉しい. ところで,少し前に映画「The Social Network (ソーシャル・ネットワーク)」を観て,登場人物の台詞や行動がなかなか面白くて気に入ったのだけど,この脚本が映画の公式サイトで公開されていることを最近知った.映画の脚本となると,特徴的な表現が多く文章数もそれなりにあるので,興味深いコーパスになり得るのではないかと思う. というわけで,NLTK習い立ての
Amazonにもレビューを書いたのですが、高村さんの「言語処理のための機械学習入門」を読みました。実はこの本を読むのは2回目で、1回目はドラフト版のレビューをさせていただく機会があったのですが、そのときは「言語処理研究者のための機械学習入門」というタイトルで、ちょっと敷居が高いのではないかとコメントしたら「研究者」の部分が削られたという経緯があったりしました。 それはともかくとして、以前読んだときは時間もなくて実装までする暇はなかったのですが、今度はもうちょっとじっくり読みたいなということで、このブログに書いてみようと思います。EMアルゴリズムは教師なし学習を確率モデルと最尤推定でやろうとするときに必ず出てくる手法で、隠れ変数や欠損値を含む色々なモデルに適用できる汎用的なフレームワークになっています。一般的には混合ガウス分布の場合をまず説明して、それがk-means法の一般化した形になって
NLP in Python vs other Programming Languages Many programming languages have been used for NLP. As explained in the Preface, we have chosen Python because we believe it is well-suited to the special requirements of NLP. Here we present a brief survey of several programming languages, for the simple task of reading a text and printing the words that end with ing. We begin with the Python version, w
リリース、障害情報などのサービスのお知らせ
最新の人気エントリーの配信
処理を実行中です
j次のブックマーク
k前のブックマーク
lあとで読む
eコメント一覧を開く
oページを開く