タグ

MATHに関するrisesumのブックマーク (8)

  • 微分方程式の講義ノートPDF。例題と解答付き (常微分方程式の初歩的な解き方を勉強) - 主に言語とシステム開発に関して

    講義ノートの目次へ 微分方程式の基礎を学ぶための講義ノートPDF。 独学に使えるオンライン教科書を集めた。院試対策の演習問題と解答もある。 微分方程式は,大学1年で必ず押さえておこう。 そうしないとあちこちで(ほとんど全分野で!)つまづいてしまう。 物理や工学の他にも,化学反応,生き物の個体数,価格の変動…などなど, 「数式で動きをモデリング」する時に何にでも使う。早いうちにマスターしよう。 とくに解が厳密に求められるケースでは, 解き方のパターンを一通り押さえておく必要がある。 求積法 →解を積分で表現 級数解 →解を無限和で表現 演算子法やラプラス変換 →代数的・記号的な操作 こういった基礎ができれば,次はもっと実用的な段階にステップアップできる: 難しい微分方程式の場合,コンピュータで数値的に シミュレーションして解を求める。 ルンゲ・クッタ法などのアルゴリズムを使う。 現実世界では

    微分方程式の講義ノートPDF。例題と解答付き (常微分方程式の初歩的な解き方を勉強) - 主に言語とシステム開発に関して
  • 数学は正しいか『数学の想像力』

    数学の「正しさ」について、ぎりぎり迫った一冊。 何によって数学的な「正しさ」を認識するのか、その根拠とでもいうべきもの、正しさの深層にあるものを掘り起こす。 書の結論はこうだ。数学の正しさの「規準」は明快だが、正しさの「根拠」は極めて非自明である。そもそも「正しさ」に根拠などというものがあるのか?この疑問への明快な解には至らないにせよ、そこへのアプローチにより、数学の「正しさ」が少しも自明ではないこと、そしてその非自明性が数学を柔軟性に富んだものにしている―――この結論のみならず、そこへ至る議論の数々が、読み手に知的な揺さぶりをかけてくる。数学の正しさを疑わない人には、頭にガツンと一撃を喰わされる。 もちろん数学は「正しい」。[Wikipedia]によると、数学とは「いくつかの仮定から始めて、決められた演繹的推論を進めることで得られる事実(定理)のみからなる体系の研究」である。そこにおけ

    数学は正しいか『数学の想像力』
  • 海城学園 数学科

    海城の教育数学数学学習における意欲の源 数学が得意な生徒にとっても、難しくてなかなか解けない問題は存在します。そういった難しい問題に出会ったとき、興味をもって粘り強く考えていけるような、いわば“意欲の源”を育むことが大切であると私どもは考えます。ときに、意欲の落ちた生徒から、「数学をなぜ学ぶのですか?」という問いかけを耳にすることがあります。これに対し、各担当者が明確に自己の意見と信念を述べつつ、お互いに考えた上で、質問者が納得し、意欲を再び取り戻せることを指導の目標の一つとしております。 数学学習の原動力 また、数学はその存在自体に価値があり、美しいものでもあります。言うなれば、数学の“崇高なる美”を感じる心を中学・高校において育みたい、そして、もっと知りたい、探ってみたいという探求の心が、数学学習における原動力となるように願ってやみません。 読み・書き・計算,そして論証する力 さ

  • やる夫で学ぶ応用数学 -フーリエ解析-

    掲示板に戻る■ ■過去ログ倉庫一覧■ やる夫で学ぶ応用数学 -フーリエ解析-1 : ◆zmN9XuyND6:2011/12/24(土) 20:28:30 ID:QzQ2AiG6               / :..:..:.:.:.:.:.:.:.:.: : : : : : .ノ : : : : : : : : : .ハ. /..:..:..:..:..:. :.:.: : : : : : /: : /:.}. . . . /: : : .、  はろー /:..:..:..:..:.. :.: : : : : : /: : / ,勹. . ./.: : : : }:.:.: /:..:..:..:.:.: rt 、/: : //ー ´ `メ、:.:./.:./: : :/: : i  今日はフーリエ解析と、その周辺の科学について /:..:..:.:../∧ /: /: / { 笊ミ彡

  • 昔、小学生に割り算の筆算教えてた時の教え方晒す: 不倒城

    その内うちの子用に必要になりそうなので、備忘録的に。 昔というのは十数年前。一応このやり方で、大体の子は三桁÷二桁の割り算の筆算ができるところまでもってこれてた。教職免許もちではないので、実際の教壇でどう教えるのかは知らない。 対象者は、「割り算の筆算が分からない」という子。対象年齢は小学校高学年、場合によっては中学校低学年。三桁÷二桁なのは、二桁×二桁の掛け算が出来るかどうかもついでに確認出来るから、というのが理由。 仮に、205÷17という割り算の問題を想定する。途中の掛け算がシンプルなのと、余りが1出るので教えやすい、というのが理由。当時も大体この式を使っていた。 前提その一。教え方をステップ化して、どこでつまづくかを確認する。全部一度に理解出来る子は、少なくとも私が教えた中では滅多にいなかった。また、小4くらいで算数が苦手な子は、かなり初歩でつまづいたままなんとなく放置している場合

  • 数学速成コース

    数学速成コース 目次 コースガイダンス 第1回:集合と論理1 第2回:線形代数1 第3回:微分積分1 第4回:線形代数2 第5回:微分積分2 第6回:確率統計1 第7回:線形代数3 第8回:微分積分3 第9回:確率統計2 第10回:集合と論理2 第11回:線形代数4 第12回:微分積分4 第13回:確率統計3 付録 Copyright (C) 2008-2009 the CompView project of Tokyo Institute of Technology (Global COE program)

  • 感じて理解する数学入門

    数学が苦手な経済学部生に向けて、大学で経営数学を教える著者が送る、身近な数学の学習書。 CDFファイルの形式でダウンロードできるサンプルを使って、視覚的な説明とともに学習できる書籍です(別途CDFプレーヤーをダウンロードする必要あり)。なお書はEbook版(PDF形式)のみの販売となります。 はじめに 私(白田)は、長年に渡って経済学部の学生相手に経営数学を教えており、いかに多くの学生が数学を苦手と感じているか、そのような学生に数学を教えることがいかに難しいか、そして、Mathematica等のソフトウェアを使った視覚的な説明がいかに効果的であるかを痛感していました。 そして、2011年震災の前の2月以来、「3次元グラフィクスを動かせるeBookを出版したい」という思いを著者一同募らせていました。しかし、電子出版の動きが欧米に比べて遅い日では、なかなか話が進みませんでした。そのような折

    感じて理解する数学入門
  • 数学の勉強が苦手な人必見!数学の理解で到達できる境地17個

  • 1