2. ⾃自⼰己紹介 l 得居 誠也 (Seiya Tokui) l Preferred Networks リサーチャー l Jubatus のアルゴリズム開発 – Jubatus: NTTとPFIで共同開発しているオープンソースの分散 リアルタイム機械学習基盤 http://jubat.us/ l 現在は映像解析とディープラーニングの研究開発に従事 2 3. ニューラルネットの基礎、実装、実験について話し ます l ニューラルネットの道具 – 全体の構成、⾏行行列列による表現、損失関数、誤差逆伝播、SGD l 主要な実装 – Pylearn2, Torch7, Caffe, Cuda-‐‑‒convnet2 l フレームワークの基本的な設計 – テンソルデータ、レイヤー、ネット、最適化ルーチン – アーキテクチャの記述⽅方法(宣⾔言的、スクリプティング) l 実験の進め⽅方