タグ

algorithmとabtestに関するruedapのブックマーク (3)

  • 多腕バンディット テスト - アナリティクス ヘルプ

    Google アナリティクス ウェブテストの基盤を成す統計手法について説明します。Google アナリティクスでは、ウェブテストの手法として多腕バンディット方式を採用しています。多腕バンディット テストには、次のような特徴があります。 最も利益の大きい選択肢の特定を目標とする ランダム分布がテストの進行とともに更新される 「多腕バンディット(multi-armed bandit)」という名前は、それぞれに異なる見込み配当率が設定された、「One-armed bandit(片腕の盗賊)」というスロット マシンが複数並んでいる状況を模した仮説テストという意味を持っています。スロット マシンのプレイヤーは、最も見込み配当率が高いスロット マシンを見つけ出す必要がある一方で、利益を最大化する必要もあります。この状況では、これまでの配当率が最も優れているマシンのみをプレイするか、それともさらに配当率

  • バンディットアルゴリズムによる最適化手法

    TOPICS Programming , Database 発行年月日 2013年07月 ISBN 978-4-87311-627-3 原書 Bandit Algorithms for Website Optimization FORMAT 書は、「多腕バンディット問題」と呼ばれる問題を解くためのアルゴリズムを、Webサイトの最適化という例をもとに解説する書籍です。 バンディットアルゴリズムに関する基的な知識について、既存研究についての理解を十分に得て、多腕バンディット問題についての資料を自力で読めるようにすることを目的としています。 A/Bテストのような2者択一ではなく、新しいアイデアの探索と、既存のアイデアから最大限の利益を引きだすという矛盾する2つの問題を解決するための一助となるでしょう。なお書はEbookのみの販売となります。 yuku_tさんによる書の英語版とバンディット

    バンディットアルゴリズムによる最適化手法
  • A/Bテストを超え、学習しながらウェブを最適化させる手法 (Bandit Algorithms for Website Optimization)

    ふと気になったので読んでみたら、当たりをひいた。 強化学習をウェブサイトの最適化に利用する方法に関してので、A/Bテストの何が問題かを説明してそれを克服するためのアルゴリズムを3つ紹介している Epsilon-greedy SoftMax UCB1 コードはPythonで書かれているので読みやすい。 実際のビジネスでは、A/Bテストで等確率でAB振り分けるために劣っている方のテストの分だけ収益が減ってしまうし、かといってテストをしないと、よりよいサイトを見出す機会がなくなってしまう。つまりexploreを最大化するか、exploitを最大化するかというようなジレンマを抱えることになる。 求められているのは、劣っているサイトデザインに対するテスト(損失)を最小にしつつベストなサイトデザインに収斂していく手法である。そういう問題をMultiarmed Bandit Probremと呼ぶらしく

    A/Bテストを超え、学習しながらウェブを最適化させる手法 (Bandit Algorithms for Website Optimization)
  • 1