Tokyowebmining発表用資料です。複数の選択肢がある場合に、どのように選択を行うのが効率的なのか?という問題を解決するためのアルゴリズムです。

Google アナリティクス ウェブテストの基盤を成す統計手法について説明します。Google アナリティクスでは、ウェブテストの手法として多腕バンディット方式を採用しています。多腕バンディット テストには、次のような特徴があります。 最も利益の大きい選択肢の特定を目標とする ランダム分布がテストの進行とともに更新される 「多腕バンディット(multi-armed bandit)」という名前は、それぞれに異なる見込み配当率が設定された、「One-armed bandit(片腕の盗賊)」というスロット マシンが複数並んでいる状況を模した仮説テストという意味を持っています。スロット マシンのプレイヤーは、最も見込み配当率が高いスロット マシンを見つけ出す必要がある一方で、利益を最大化する必要もあります。この状況では、これまでの配当率が最も優れているマシンのみをプレイするか、それともさらに配当率
Deleted articles cannot be recovered. Draft of this article would be also deleted. Are you sure you want to delete this article? オバマ大統領の再選に大きく寄与したことで大きな注目を集めているA/Bテスト。A/Bテストを導入した、することを検討している、という開発現場も多いのではないだろうか。 そんな中、Web上で次のような議論を見つけた。 20 lines of code that will beat A/B testing every time Why multi-armed bandit algorithm is not “better” than A/B testing 一言でまとめると「A/Bテストよりバンディットアルゴリズムの方がすごいよ」「いやいやA
リリース、障害情報などのサービスのお知らせ
最新の人気エントリーの配信
処理を実行中です
j次のブックマーク
k前のブックマーク
lあとで読む
eコメント一覧を開く
oページを開く