タグ

Pythonとclassificationに関するs-fengのブックマーク (3)

  • 不均衡データに対するClassification - Qiita

    分類問題のなかには、ラベル0が90%、ラベル1が10%といったデータが不均衡のケースが存在します。特段の工夫をせずに分類モデルを生成すると少数派の分類精度の低いモデルになることが知られています。分類モデルの目的が多数派の識別であれば深刻な問題にならないのですが、こうした不均衡データを取り扱う場合は、少数派データの識別が目的のケースが多いので、工夫が必要とされます。 論は、過去の研究によって提案されている方法のうち、1)アンダーサンプリング、2)オーバーサンプリング、3)コスト関数のカスタマイズについての実装結果とその効果について報告します。 アンダーサンプリング アンダーサンプリングとは、少数派のデータ件数に合うように多数派データからランダムに抽出する方法です。この方法の良いところは直感的でわかりやすいことでしょう。 多数派のデータからのリサンプリングは、DataFrameであればsam

    不均衡データに対するClassification - Qiita
  • dfltweb1.onamae.com – このドメインはお名前.comで取得されています。

    このドメインは お名前.com から取得されました。 お名前.com は GMOインターネットグループ(株) が運営する国内シェアNo.1のドメイン登録サービスです。 ※表示価格は、全て税込です。 ※サービス品質維持のため、一時的に対象となる料金へ一定割合の「サービス維持調整費」を加算させていただきます。 ※1 「国内シェア」は、ICANN(インターネットのドメイン名などの資源を管理する非営利団体)の公表数値をもとに集計。gTLDが集計の対象。 日のドメイン登録業者(レジストラ)(「ICANNがレジストラとして認定した企業」一覧(InterNIC提供)内に「Japan」の記載があるもの)を対象。 レジストラ「GMO Internet Group, Inc. d/b/a Onamae.com」のシェア値を集計。 2023年5月時点の調査。

    dfltweb1.onamae.com – このドメインはお名前.comで取得されています。
  • 【機械学習】ディープラーニング フレームワークChainerを試しながら解説してみる。 - Qiita

    今話題のDeep Learning(深層学習)フレームワーク、Chainerに手書き文字の判別を行うサンプルコードがあります。こちらを使って内容を少し解説する記事を書いてみたいと思います。 (記事のコードの全文をGitHubにアップしました。[PC推奨]) とにかく、インストールがすごく簡単かつ、Pythonが書ければすぐに使うことができておすすめです! Pythonに閉じてコードが書けるのもすごくいいですよね。 こんな感じのニューラルネットワークモデルを試してみる、という記事です。 主要な情報はこちらにあります。 Chainerのメインサイト ChainerのGitHubリポジトリ Chainerのチュートリアルとリファレンス 1. インストール# まずは何はともあれインストールです。ChainerのGitHubに記載の"Requirements" ( https://github.c

    【機械学習】ディープラーニング フレームワークChainerを試しながら解説してみる。 - Qiita
  • 1