データサイエンス 【ついに3部完結】機械学習超入門講座の本番編を公開しました!! 2023.03.08 かめ@米国データサイエンティスト こんにちは,米国データサイエンティストのかめ(@usdatascientist)です. ついに,機械学習超入門の本番編を公開し3部作が完結しました!!(こちらは,前後編の後続の講座となります. 本番編は,実際の業務等で機…
最終更新:2017年6月1日 状態空間モデルとはいったい何で、どんな時に使うといいのか、使うとどんなご利益があるのかということについて書きます。 ●状態空間モデル関連のページ なぜ状態空間モデルを使うのか 状態空間モデル:状態空間モデルのことはじめ dlmの使い方 :Rで正規線形状態空間モデルを当てはめる ローカルレベルモデル:dlmパッケージを使ってローカルレベルモデルを当てはめる 季節とトレンド:dlmパッケージを使って季節成分とトレンドの入ったモデルを作る dlmによる時変形数モデル:dlmによる「時間によって係数が変化する回帰モデル」の作成 Pythonによる状態空間モデル:R言語ではなくPythonを使いたい方はこちらをどうぞ 時系列分析と状態空間モデルの基礎:サポートページ:時系列分析と状態空間モデルの入門書を書きました。 状態空間モデルに関しては、大枠を説明してから 少しずつ
最終更新:2016年1月24日 このサイトでは統計学や統計モデルの紹介を多くしています。 その中でも、状態空間モデルは、力を入れている分野の一つです。 ところで、なぜ状態空間モデルを使う必要があるのでしょうか。 そもそもにおいて、統計モデルを使う必要性はどこにあるのでしょうか。 今回は個々の手法の説明ではなく「なぜそれを使うのか」という理由を解説します。 スポンサードリンク 目次 1.なぜモデルを使うのか 2.なぜ統計モデルを使うのか 3.なぜ状態空間モデルを使うのか 4.なぜたくさんのモデルを統一的に表せると便利なのか 5.状態空間モデルを使う注意点 6.状態空間モデルの御利益 7.おまけ:統計モデルと機械学習の違い 1.なぜモデルを使うのか モデルとは、「見やすくなるように簡略化したもの」です。 モデルを作る行為、すなわちモデル化とは、「見やすくなるように簡略化すること」です。 例えば
数回にわたって動的計画法・メモ化再帰について解説してきましたが、今回は実践編として、ナップサック問題への挑戦を足がかりに、その長所と短所の紹介、理解度チェックシートなどを用意しました。特に、動的計画法について深く掘り下げ、皆さんを動的計画法マスターの道にご案内します。 もしあなたが知ってしまったなら――病みつきになる動的計画法の集中講義 前回の『アルゴリズマーの登竜門、「動的計画法・メモ化再帰」はこんなに簡単だった』で動的計画法とメモ化再帰を説明しましたが、前回の説明ではまだ勘所をつかめていない方がほとんどでしょう。そこで、これらを完全にマスターするため、今回はもう1つ具体例を挙げながら練習したいと思います。 どういった問題を採用するかは悩みましたが、非常に有名な「ナップサック問題」を取り上げて説明します。 ナップサック問題とは以下のような問題です。 幾つかの品物があり、この品物にはそれぞ
動的計画法とメモ化再帰 今回は、非常によく用いられるアルゴリズムである、「動的計画法」「メモ化再帰」について説明します。この2つはセットで覚えて、両方使えるようにしておくと便利です。 なお、メモ化再帰に関しては、第5・6回の連載の知識を踏まえた上で読んでいただけると、理解が深まります。まだお読みになっていない方は、この機会にぜひご覧ください。 中学受験などを経験された方であれば、こういった問題を一度は解いたことがあるのではないでしょうか。小学校の知識までで解こうとすれば、少し時間は掛かるかもしれませんが、それでもこれが解けないという方は少ないだろうと思います。 この問題をプログラムで解こうとすると、さまざまな解法が存在します。解き方によって計算時間や有効範囲が大きく変化しますので、それぞれのパターンについて考えます。 以下の説明では、縦h、横wとして表記し、プログラムの実行時間に関しては、
トップクラスだけが知る「このアルゴリズムがすごい」――「探索」基礎最速マスター:最強最速アルゴリズマー養成講座(1/4 ページ) プログラミングにおける重要な概念である「探索」を最速でマスターするために、今回は少し応用となる探索手法などを紹介しながら、その実践力を育成します。問題をグラフとして表現し、効率よく探索する方法をぜひ日常に生かしてみましょう。 まだまだ活用可能な探索 前回の「知れば天国、知らねば地獄――『探索』虎の巻」で、「探索」という概念の基礎について紹介しました。すでに探索についてよく理解している方には物足りなかったかと思いますが、「問題をグラフとしてうまく表現し、そのグラフを効率よく探索する」というアルゴリズマー的な思考法がまだ身についていなかった方には、得るものもあったのではないでしょうか。 前回は、「幅優先探索」と「深さ優先探索」という、比較的単純なものを紹介しましたが
2009年3月2日に、はてな京都オフィスで開催された アルゴリズムイントロダクション輪講 の第12回で「動的計画法」について発表しました。資料をここにおいておきます。View more presentations from nitoyon.分かりやすくしようと気合を入れてまとめたら165ページの大作になっちゃいました。無駄に長くてすいません。アルゴリズムの設計と解析手法 (アルゴリズムイントロダクション)作者: T.コルメン, R.リベスト, C.シュタイン, C.ライザーソン, Thomas H. Cormen, Clifford Stein, Ronald L. Rivest, Charles E. Leiserson, 浅野哲夫, 岩野和生, 梅尾博司, 山下雅史, 和田幸一出版社/メーカー: 近代科学社発売日: 2007/03メディア: 単行本
ここでは、プログラムなどでよく使用されるアルゴリズムについて紹介したいと思います。 元々は、自分の頭の中を整理することを目的にこのコーナーを開設してみたのですが、最近は継続させることを目的に新しいネタを探すようになってきました。まだまだ面白いテーマがいろいろと残っているので、気力の続く限りは更新していきたいと思います。 今までに紹介したテーマに関しても、新しい内容や変更したい箇所などがたくさんあるため、新規テーマと同時進行で修正作業も行なっています。 アルゴリズムのコーナーで紹介してきたサンプル・プログラムをいくつか公開しています。「ライン・ルーチン」「円弧描画」「ペイント・ルーチン」「グラフィック・パターンの処理」「多角形の塗りつぶし」を一つにまとめた GraphicLibrary と、「確率・統計」より「一般化線形モデル」までを一つにまとめた Statistics を現在は用意して
レコメンデーションとエディットグラフ:コーディングに役立つ! アルゴリズムの基本(10)(1/4 ページ) プログラマたるものアルゴリズムとデータ構造は知っていて当然の知識です。しかし、教科書的な知識しか知らなくて、実践的なプログラミングに役立てることができるでしょうか(編集部) 実際のアプリケーションで使われるアルゴリズム これまで見てきたアルゴリズムは、実際のアプリケーション開発の際にそのまま使われることはあまりなく、プログラム言語やライブラリなどですでに機能が用意されているものが大半でした。 今回は最終回ということで、実際のアプリケーション開発でそのまま使えるものを紹介したいと思います。 レコメンデーション ECサイトで、「あなたにお勧めの商品」を表示していることがあります。いろいろなデータベースや行動履歴のデータから、その人ごとにお勧めの商品をはじき出して推薦する機能をレコメンデー
リリース、障害情報などのサービスのお知らせ
最新の人気エントリーの配信
処理を実行中です
j次のブックマーク
k前のブックマーク
lあとで読む
eコメント一覧を開く
oページを開く