導入 直近、これといって緊急の業務がなく、「自分の時間だ何勉強しようかなー」とPyStanとかをいじっていた矢先、「暇なら技術調査やってよ、Deep Learning的な何かとか」というお達しがきました。あいにく私は天邪鬼なので、2つ返事をして気になっていたけど触っていなかったProphetを調べることにしたのでした。 注:仕事はちゃんとしました(Seq2Seqの論文や書籍見て簡単な実装をしました)。 Prophet Facebookが出した時系列予測のツールです。 facebook.github.io すでに様々な方が紹介をしたり、Contributeしていたりするので、釈迦に説法感がありますが、このツールの良い点は、簡単に(分析の専門知識がなくても)ある程度それらしい予測値を出してくれるところです。ビジネス側でデータを活用したい場合や、分析者でもいったん簡単にデータから言えることを見て
機械学習のスタックしていた案件をFacebook Prophetで3日で返済した話 背景 広告代理店業を行なっており、クライアント企業から予算を預かって、インターネット広告やマーケティング業をしているのだが、クライアントの予算消化の異常値を監視したい 2016年半ばに外部のデータ分析専門の会社に、その日の予算消化が異常の場合、アラートを鳴らすシステムを外注開始、2016年10月に納品 2017年9月半ばに進捗率が芳しくないことが判明した。終わる見込みが立たなかったので、私が解決に当たる (ついでに"Machine Learning: The High-Interest Credit Card of Technical Debt[2]"と呼ばれる負債化してしまう機械学習のシステムとはという評価軸があったので、これらから今回使えそうなプラクティスを取り出して適応してみたいというモチベーションが
ベイズ統計学の基礎概念からW理論まで概論的に紹介するスライドです.数理・計算科学チュートリアル実践のチュートリアル資料です.引用しているipynbは * http://nhayashi.main.jp/codes/BayesStatAbstIntro.zip * https://github.com/chijan-nh/BayesStatAbstIntro を参照ください. 以下,エラッタ. * 52 of 80:KL(q||p)≠KL(q||p)ではなくKL(q||p)≠KL(p||q). * 67 of 80:2ν=E[V_n]ではなくE[V_n] → 2ν (n→∞). * 70 of 80:AICの第2項は d/2n ではなく d/n. * 76 of 80:βH(w)ではなくβ log P(X^n|w) + log φ(w). - レプリカ交換MCと異なり、逆温度を尤度にのみ乗す
※ 2017/1/16に追記しました Retty Advent Calendarで穴が空きそうになったとき用に記事用意してたんですが、ちゃんとみんな埋めてくれたみたいです。良かった。 で、用意した記事が無駄になってももったいないので普通の記事として公開しちゃいます。 皆さんfastTextって知ってますか? Facebookが公開している自然言語処理用のツールです。GPU使わないのに超速いのでありがたく使ってます。 単語の分散表現を学習させたり文章の分類とかができるんですが、分散表現の学習の仕組みって語彙にID振ってone-hot vectorにして、それを次元圧縮してるんですよね?(適当) じゃあ、ID列で表せる何かならなんでも分散表現にできるんじゃね?って思いません? 思いついたらやってみましょう。 用意するもの fastText Rettyユーザーのお店詳細ページの閲覧履歴 やること
リリース、障害情報などのサービスのお知らせ
最新の人気エントリーの配信
処理を実行中です
j次のブックマーク
k前のブックマーク
lあとで読む
eコメント一覧を開く
oページを開く