You signed in with another tab or window. Reload to refresh your session. You signed out in another tab or window. Reload to refresh your session. You switched accounts on another tab or window. Reload to refresh your session. Dismiss alert
新はてブ正式リリース記念ということで。もうリリースから何週間も経っちゃったけど。 新はてなブックマークではブックマークエントリをカテゴリへと自動で分類しているが、このカテゴリ分類に使われているアルゴリズムはComplement Naive Bayesらしい。今日はこのアルゴリズムについて紹介してみる。 Complement Naive Bayesは2003年のICMLでJ. Rennieらが提案した手法である。ICMLというのは、機械学習に関する(たぶん)最難関の学会で、採択率はここ数年は30%を切っている。2003は119/371で、32.1%の採択率だったようだ。 Complement Naive Bayesの位置づけは 実装が簡単 学習時間が短い 性能もそこそこよい という感じで、2003年段階にあっても、絶対的な性能ではSVMに負けていた。しかし、学習が早いというのは実アプリケーシ
2011-01-18追記 教科書編その2 にて2011年版のIR教科書を紹介しています 情報検索(IR)の勉強を本格的に始めて8ヶ月.大体どんな分野があって,どんなことを勉強すればいいのかわかってきた(と思う).この気持ちを忘れないうちにメモしておこう.以下,若輩があーだこーだ言ってるだけなので,間違いや他に情報があれば,ぜひコメントをお願いします. # ここで述べている情報検索とは,コンピュータサイエンスの一分野としての情報検索です.図書館情報学の側面は一切扱っていません,あしからず. というわけでまず教科書編. 本腰を入れて勉強する場合,基礎づくりのためには教科書選びがいちばん重要だと思っている.自分の知っている限り,情報検索における教科書の選択肢はそれほど広くはない.以下に紹介する本は,情報検索を学ぶ上で「買い」の本.これらを読めば,最新の論文を読めるだけの土台はできるし,専門家と議
すでにニュースでも伝えられている通り、12 月 1 日に第 7 回アルゴリズムイントロダクション輪講会がありました。今回の担当は私だったので、その発表資料を公開します。 中央値と順序統計量 (その 1) 予定 順序統計量とは 選択問題とは 最小値と最大値 平均線形時間選択アルゴリズム 中央値と順序統計量 (その 2) 最悪線形時間選択アルゴリズム 3 つずつのグループに分割した場合 7 つずつのグループに分割した場合 参考文献 中央値と順序統計量 (補足) 4 つずつのグループに分割した場合 6 つずつのグループに分割した場合 Lazy-Select Randomized-Partition スタッフロール 「どうせ後から Web で公開するんだから、PDF とか見るのに手間がかかるものは使ってられないよね。やっぱ時代は XML 複合文書でしょ!」と、数式を表現するのに MathML を使
数週間前の話になりますが、「はてブのリニューアル会見」の記事を読んでいたところ、はてブにも「自動カテゴライズによる記事分類」の機能が搭載されるとか。。。 同じようなタイミングで「似たようなモノ」というか「ほぼ同じようなモノ」を作っていたので、すごーくインスパイアされてしまいました。ジュワ〜。(アドレナリンの放出音) 数週間たってもいまだ興奮冷めやらぬ状態なので、今日はその件について書いてみようと思います。 Lingua::JA::Categorize - a Naive Bayes Classifier for Japanese document. http://search.cpan.org/~miki/Lingua-JA-Categorize-0.00001/ 「はてブのパクリ」ではありません。「ベイジアンによる日本語テキスト分類器」を「簡単に作る」ことを目的としたモジュールです。 も
圧縮全文索引の実装などでしばしば利用される Rank/Select 辞書と呼ばれるデータ構造があります。詳しくは参考文献を参照していただくとして、今回は一般の文字列に対して効率的に Rank/Select を可能とするデータ構造である Wavelet Tree (ウェーブレット木) のライブラリを作りました。 http://github.com/naoya/perl-algorithm-wavelettree/tree/master my $wt = Algorithm::WaveletTree->new("abccbbabca"); is $wt->rank(6, 'a'), 2; is $wt->rank(6, 'b'), 3; is $wt->rank(9, 'b'), 4; is $wt->select(0, 'a'), 0; is $wt->select(1, 'a'), 6;
はじめに こんにちは。hirataraです。 私が初めて正規表現を使ったのは、PerlによるCGIでの文字列処理でした。それから私はPerlを使い続け、今では正規表現なしのコーディングは考えられないほど、正規表現を当たり前の機能として日常的に使っています。昔は標準では正規表現をサポートしていなかったJavaも、今では正規表現をサポートするようになりました。Javaだけではなく、今日ではほとんどの高級言語にとって、正規表現はなくてはならない機能であると言っても過言ではないほどメジャーな機能となっています。 本記事では、この正規表現の舞台裏に光を当てます。一見すると作ることが難しそうな正規表現エンジンですが、その根底には数学的な概念があり、その概念さえ知っていれば基礎となる機能の実装はそんなに難しくありません。この連載ではその数学的な概念をPythonを使って表現しながら、実際に動作する正規表
平成20年度 東京大学大学院 情報理工学系研究科・コンピュータ科学専攻 配列解析アルゴリズム特論I 4/10 4/17 4/24 5/1 5/8 5/15 5/22 5/29 (The problem to be reported - in English) 6/5 6/12 6/19 7/3 7/10 7/17 東京大学 理学部・情報科学科 情報科学特別講義3 (情報科学とバイオインフォマティクス) 6/10 7/15 7/22 東京大学大学院 新領域創成科学研究科・情報生命科学専攻 情報生命科学基礎/演習 5/27 6/17 京都大学大学院 薬学研究科・医薬創成情報科学専攻 情報科学概論 6/3 中央大学大学院 理工学系研究科・物理学専攻 物理学特別講義第二 TBA 創価大学工学部 生命情報工学科 TBA TBA 戻る Copyright (c) 2004- Tetsuo
はじめに まずはともあれ腕試し、この問題を解いてみてくださいな: 【問1】 デタラメな順序で並んだ文字列の集合がテキストファイル「input.txt」に収められています。この文字列群を辞書順(昇順)に並び換えたテキストファイル「sorted.txt」を作りなさい。 ※各文字列は改行で区切られています。 プログラミング教本の練習問題、あるいは学校の課題で出てきそうな“お馴染み”の問題です。ソート(整列)アルゴリズムの実装には配列/代入/条件分岐/ループなどなどプログラミングの基本中の基本となる構文を総動員するため、練習問題としてよく使われますね。 早速解いてみましょう、ソート・アルゴリズムにはこれまたお馴染みのバブル・ソートを使います。C#、VB.NET、C++/CLIの3本まとめて一気にいきますよ: using System; using System.IO; using System.C
“アルゴリズム”は、もっとも非人間的なものの代表だともいえる。ソーシャルメディアにとって、そのアルゴリズムが不可欠だというのは、実に皮肉めいている。 僕はこの間、グーグルがどうやってユーザーデータを集めているかについて書いた記事を掲載した(前編、後編)。今回は、著名なソーシャルメディアサイトが、ユーザーデータを活用する上でどのようにアルゴリズムを用いているのか、白日の下にさらそう。 ソーシャルメディアを成り立たせているのは人間の力だが、ユーザーが入力したデータを利用できる状態にする仕組みは、アルゴリズムによって作られている。現在活動している無数のソーシャルメディアサイトで実証済みのことだが、ユーザーの関与とアルゴリズムによる処理ルールの上手いバランスを見出すことは、とても難しくなりがちだ。これから紹介するアルゴリズムは、悪意のないユーザーと結びついて初めてうまくいくものだ。 人気ソーシャル
自然言語処理のときに使う機械学習手法のテクニックをざーっと2時間程度で紹介してほしいとのことだったので今日話してきました。基本的に、そんなに頑張らなくても効果が大きいものを中心に説明(特にパーセプトロンとか)を説明してます。 紹介した手法はパーセプトロン、最大エントロピー、正則化、多クラス分類、系列分類(CRF, Structured Perceptron)などなどです。どれも一かじりする感じで網羅的に見る方を優先してます。個々の詳しい話はそれぞれの文献や実装などを当たってみてください。 スライド [ppt] [pdf] ここで話しているのは線形識別モデルの教師有り学習が中心で教師無し学習(クラスタリングなど)など他の自然言語処理を支える技術は省いてます。 こういうのを使って(使わなくてもいいけど)どんどんアプリケーション作らないといかんね。 Tarot is not used to ma
チャリンコ通勤による滝のような汗で、朝からTシャツがシースルーになってしまうmikioです。さて今回は、Tokyo Cabinet(TC)のデータベースを各種のアルゴリズムで圧縮して利用する方法についてご紹介します。 圧縮B+木 B+木とは、比較関数の値による順序が近いレコード群を単一のページにまとめ、各ページにB木(multiway balanced treeの略であり、二分木(binary tree)とは違います)の索引を張ったものです。理論的にはレコードの探索も更新も O(log n) の時間計算量で行え、内部ノード(B木)の操作をキャッシュすると実質的には O(1) の時間計算量で探索や更新が行えるという、かなり安定した性能を備えるデータ構造です。その上、レコードが一定の順序に基づいて並べられているので、数値の範囲検索や文字列の前方一致検索が高速に行えたり、カーソルによって順序に基
先日のソーシャルブックマーク研究会では id:kanbayashi さんによる発表がありました。id:kanbayashi さんは Kikker や はてブまわりのひと などの開発をされている方です。最近情報検索理論に入門した自分にとっては、非常に面白い発表でした。 発表の中で Kikker の学習の仕組みについての解説もありました。Kikker は Cosine similarity で推薦するドキュメントを検索しているそうですが、ユーザーのクリックデータを使って、ユーザーごとに推薦対象を最適化するようにしているそうです。この学習は、ユーザーが見たページのベクトルを、そのユーザーの趣向ベクトルに足し込むことで実現している、とのことでした。 SBM研究会で発表した"私がチャレンジしたSBMデータマイニング"のスライド - Ryoの開発日記 Neo! 発表ではベクトルを加算することについて「
WEB+DB PRESS vol.42の特集「アルゴリズム&データ構造」でもとりあげられていたTrie(とらい; p34-37)について調べてみたので、忘れないようにメモです。 Trie(s)というのは単語を辞書のなかから見つけ出すときに人がふつうに行っている探し方のアルゴリズムです。例えば、poolならまず、pのところに行って、次にoのところに行って、、、つまり、p -> o -> o -> lと探していきます。続いてprizeを見つけるとしたら、p -> r -> i -> z -> eですが、先頭の文字が同じpなので、pの付近からはずれたところから始めたりはしません。この二つの単語の場合pをprefixと見なすのがTrieです。poolとpoleだったらprefixはpoにのびていきます。prefixがのびていけばいくほど候補は減っていきます。ちょうどIDEのメソッド補完機能のように
GoogleのMapReduceアルゴリズムをJavaで理解する:いま再注目の分散処理技術(前編)(1/2 ページ) 最近注目を浴びている分散処理技術「MapReduce」の利点をサンプルからアルゴリズムレベルで理解し、昔からあるJava関連の分散処理技術を見直す特集企画(編集部) いま注目の大規模分散処理アルゴリズム 最近、大規模分散処理が注目を浴びています。特に、「MapReduce」というアルゴリズムについて目にすることが多くなりました。Googleの膨大なサーバ処理で使われているということで、ここ数年の分散処理技術の中では特に注目を浴びているようです(参考「見えるグーグル、見えないグーグル」)。MapReduceアルゴリズムを使う利点とは、いったい何なのでしょうか。なぜ、いま注目を浴びているのでしょうか。 その詳細は「MapReduce : Simplified Data Proc
1.はじめに プログラミング言語とはシステム化する対象物を抽象化し、コンピュータで処理可能なコードを記述するために用いる人工言語である。プログラミング言語はコンピュータの機械語と一対一の対応をもったアセンブラから始まり、コンパイラを用いて機械語に翻訳することを前提としたコンパイラ言語、インタプリタと呼ばれるプログラムがソースコードを解釈し実行するスクリプト言語と、記述できる抽象度を高める方向へと進化してきた。 プログラミング言語はその存在理由から、より抽象度の高い記述が行えること、すばやい開発を行える事が求められる。抽象度の高い記述とは、プログラムがどういう処理を行うか(HOW)ではなく何の処理を行うか(WHAT)を記述しやすい構文、機能を持っていることを、すばやい開発とは記述性の高さ、コードの密度の高さ、バグの発生しにくい構文、機能を持っていることをさす。 この抽象度の高い記述、すばやい
Discussion These pages show 8 different sorting algorithms on 4 different initial conditions. These visualizations are intended to: Show how each algorithm operates. Show that there is no best sorting algorithm. Show the advantages and disadvantages of each algorithm. Show that worse-case asymptotic behavior is not the deciding factor in choosing an algorithm. Show that the initial condition (inp
この記事は全然ダメだったようです。 こちらに新しく書き直しました。 http://d.hatena.ne.jp/amachang/20080617/1213694238 こんな感じになった #include <stdio.h> #include <stdlib.h> #include <memory.h> #include <pthread.h> static int* q; static int n; // 次に入れるインデックス static int l; // 次に出すインデックス static int s; static pthread_mutex_t m; static pthread_cond_t c; void initQ (size_t size) { n = 0; l = 0; s = size; // キューの領域確保 q = (int*)malloc(s * size
リリース、障害情報などのサービスのお知らせ
最新の人気エントリーの配信
処理を実行中です
j次のブックマーク
k前のブックマーク
lあとで読む
eコメント一覧を開く
oページを開く