私たちは、単一のニューラル機械翻訳(NMT)モデルを使用して、複数の言語どうしを翻訳する、シンプルで洗練されたソリューションを提案します。 私たちのソリューションでは、基本のアーキテクチャーからモデルのアーキテクチャーを変更する必要はありません。代わりに入力文の始めに特殊な人工的なトークンを導入して、必要なターゲット言語を指定するだけです。エンコーダ、デコーダ、アテンションを含むモデルの残りの部分は変更されず、すべての言語で共有されています。 共有ワードピースのボキャブラリを使用することで、多言語NMTはパラメータを増やさずに、単一のモデルを利用することができるのです。これは、従来の多言語NMTの提案よりも大幅に簡単なものです。私たちの方法は、多くの場合、モデル・パラメータの総数を一定に保ちながら、関連するすべての言語ペアの翻訳品質を改善します。 WMT'14のベンチマークでは、単一の多言