並び順

ブックマーク数

期間指定

  • から
  • まで

1 - 13 件 / 13件

新着順 人気順

multiple linear regression python implementationの検索結果1 - 13 件 / 13件

  • GPT in 60 Lines of NumPy | Jay Mody

    January 30, 2023 In this post, we'll implement a GPT from scratch in just 60 lines of numpy. We'll then load the trained GPT-2 model weights released by OpenAI into our implementation and generate some text. Note: This post assumes familiarity with Python, NumPy, and some basic experience with neural networks. This implementation is for educational purposes, so it's missing lots of features/improv

    • 100+ Best GitHub Repositories For Machine Learning

      There are millions of GitHub repos and filtering them is an insane amount of work. It takes a huge time, effort, and a lot more. We have done this for you. In this article, we’ll share a curated list of 100+ widely-known, recommended, and most popular repositories and open source GitHub projects for Machine Learning and Deep Learning. So without further ado, Let’s see all the hubs created by exper

        100+ Best GitHub Repositories For Machine Learning
      • Python open source libraries for scaling time series forecasting solutions

        By Francesca Lazzeri. This article is an extract from the book Machine Learning for Time Series Forecasting with Python, also by Lazzeri, published by Wiley. In the first and second articles in this series, I showed how to perform feature engineering on time series data with Python and how to automate the Machine Learning lifecycle for time series forecasting. In this third and concluding article,

          Python open source libraries for scaling time series forecasting solutions
        • Andrej Karpathy — AGI is still a decade away

          The Andrej Karpathy episode. Andrej explains why reinforcement learning is terrible (but everything else is much worse), why model collapse prevents LLMs from learning the way humans do, why AGI will just blend into the previous ~2.5 centuries of 2% GDP growth, why self driving took so long to crack, and what he sees as the future of education. Watch on YouTube; listen on Apple Podcasts or Spotify

            Andrej Karpathy — AGI is still a decade away
          • GIMP - Development version: GIMP 2.99.12 Released

            GIMP 2.99.12 is a huge milestone towards GIMP 3.0. Many of the missing pieces are getting together, even though it is still a work in progress. As usual, issues are expected and in particular in this release which got important updates in major areas, such as canvas interaction code, scripts, but also theming… “CMYK space invasion”, by Jehan (based on GPLv3 code screencast), Creative Commons by-sa

              GIMP - Development version: GIMP 2.99.12 Released
            • xvw.lol - Why I chose OCaml as my primary language

              This article is a translation, the original version is available here. I started using the OCaml language regularly around 2012, and since then, my interest and enthusiasm for this language have only grown. It has become my preferred choice for almost all my personal projects, and it has also influenced my professional choices. Since 2014, I have been actively participating in public conferences d

              • Why We Use Julia, 10 Years Later

                Exactly ten years ago today, we published "Why We Created Julia", introducing the Julia project to the world. At this point, we have moved well past the ambitious goals set out in the original blog post. Julia is now used by hundreds of thousands of people. It is taught at hundreds of universities and entire companies are being formed that build their software stacks on Julia. From personalized me

                  Why We Use Julia, 10 Years Later
                • The Pitchfork Story

                  A bit more than two years ago, as part of my work in Shopify’s Ruby and Rails Infrastructure team, I released a new Ruby HTTP server called Pitchfork. It has a bit of an unusual design and makes hard tradeoffs, so I’d like to explain the thought process behind these decisions and how I see the future of that project. Unicorn’s Design Is Fine Ever since I joined Shopify over 11 years ago, the main

                  • Accelerating Generative AI with PyTorch: Segment Anything, Fast – PyTorch

                    Blog Accelerating Generative AI with PyTorch: Segment Anything, Fast This post is the first part of a multi-series blog focused on how to accelerate generative AI models with pure, native PyTorch. We are excited to share a breadth of newly released PyTorch performance features alongside practical examples of how these features can be combined to see how far we can push PyTorch native performance.

                      Accelerating Generative AI with PyTorch: Segment Anything, Fast – PyTorch
                    • Nx (Numerical Elixir) is now publicly available - Dashbit Blog

                      Sean Moriarity and I are glad to announce that the project we have been working on for the last 3 months, Nx, is finally publicly available on GitHub. Our goal with Nx is to provide the foundation for Numerical Elixir. In this blog post, I am going to outline the work we have done so far, some of the design decisions, and what we are planning to explore next. If you are looking for other resources

                      • Goodbye, Data Science

                        This is more of a personal post than something intended to be profound. If you are looking for a point, you will not find one here. Frankly I am not even sure who the target audience is for this (probably “data scientists who hate themselves”?). I had been a data scientist for the past few years, but in 2022, I got a new job as a data engineer, and it’s been pretty good to me so far. I’m still wor

                          Goodbye, Data Science
                        • Version 1.0

                          Version 1.0# For a short description of the main highlights of the release, please refer to Release Highlights for scikit-learn 1.0. Legend for changelogs Major Feature something big that you couldn’t do before. Feature something that you couldn’t do before. Efficiency an existing feature now may not require as much computation or memory. Enhancement a miscellaneous minor improvement. Fix somethin

                          • Python/STAN Implementation of Multiplicative Marketing Mix Model, with Deep Dive into Adstock... | Towards Data Science

                            Python/STAN Implementation of Multiplicative Marketing Mix Model, with Deep Dive into Adstock… Python/STAN Implementation of Multiplicative Marketing Mix Model With Deep Dive into Adstock, Diminishing Return, ROAS, and mROAS Full code and simulated dataset are posted on my Github repo: https://github.com/sibylhe/mmm_stan The methodology of this project is based on this paper by Google, but is appl

                              Python/STAN Implementation of Multiplicative Marketing Mix Model, with Deep Dive into Adstock... | Towards Data Science
                            1