並び順

ブックマーク数

期間指定

  • から
  • まで

1 - 8 件 / 8件

新着順 人気順

python sqlalchemy update exampleの検索結果1 - 8 件 / 8件

  • GitHub - modelcontextprotocol/servers: Model Context Protocol Servers

    Official integrations are maintained by companies building production ready MCP servers for their platforms. 21st.dev Magic - Create crafted UI components inspired by the best 21st.dev design engineers. ActionKit by Paragon - Connect to 130+ SaaS integrations (e.g. Slack, Salesforce, Gmail) with Paragon’s ActionKit API. Adfin - The only platform you need to get paid - all payments in one place, in

      GitHub - modelcontextprotocol/servers: Model Context Protocol Servers
    • The Ultimate Guide to Error Handling in Python

      I often come across developers who know the mechanics of Python error handling well, yet when I review their code I find it to be far from good. Exceptions in Python is one of those areas that have a surface layer that most people know, and a deeper, almost secret one that a lot of developers don't even know exists. If you want to test yourself on this topic, see if you can answer the following qu

        The Ultimate Guide to Error Handling in Python
      • Boring Python: code quality

        Boring Python: code quality December 19, 2022 Django, Python This is the second in a series of posts I intend to write about how to build, deploy, and manage Python applications in as boring a way as possible. In the first post in the series I gave a definition of what I mean by “boring”, and it’s worth revisiting: I don’t mean “reliable” or “bug-free” or “no incidents”. While there is some overla

          Boring Python: code quality
        • TerraformとCloud RunとCloud Load BalancingでCI/CDを突き詰めた

          こんにちは。 ピリカ開発チームの伊藤です。 ピリカでは6月1日より、ピリカサポーターズクラブを開始しました。 まだご覧になっていない方はこちらをご覧ください。 corp.pirika.org ピリカサポーターズクラブをはじめるにあたって新しいシステムを構築しました。 ピリカの開発チームのリソースは潤沢ではない中、全く新しいシステムを作るのはとても大きなチャレンジです。 社内からも「開発のリソースが潤沢でないならSNSピリカに注力すべき」という意見はありましたが、開発チームでは単に新しいシステムを作るだけではなく、この開発を「SNSピリカの開発を今後少ないリソースで効率的に進めるために必要な基盤の実験」としても位置付けていました。 この開発を通じて得たことのまとめとして、ピリカサポーターズクラブの構成やデプロイの仕組みをご紹介したいと思います。 SNSピリカの開発で抱えている問題 SNSピリ

            TerraformとCloud RunとCloud Load BalancingでCI/CDを突き詰めた
          • Open sourcing Querybook, Pinterest’s collaborative big data hub

            An efficient big data solution for an increasingly remote-working world. Charlie Gu | Tech Lead, Analytics Platform, Lena Ryoo | Software Engineer, Analytics Platform, and Justin Mejorada-Pier | Engineering Manager, Analytics Platform With more than 300 billion Pins, Pinterest is powering an ever-growing and unique dataset that maps interests, ideas, and intent. As a data-driven company, Pinterest

              Open sourcing Querybook, Pinterest’s collaborative big data hub
            • The ultimate async setup: FastAPI, SQLModel, Alembic, Pytest

              FastAPI is a popular topic nowadays and I have decided to share my setup for an async web-server using this framework. Here is a short description of python packages used in the article (just to make a whole picture to save your time): Poetry (https://python-poetry.org) — is a tool for dependency management and packaging in Python. It allows you to declare the libraries your project depends on and

                The ultimate async setup: FastAPI, SQLModel, Alembic, Pytest
              • Litestar is worth a look

                A few years ago at work, I had a project which offered an opportunity to look at the new generation of async-first, type-hint-driven Python web frameworks. For reasons which aren’t particularly relevant today, on that project I ended up choosing Litestar, which is the one that doesn’t have a ravenous all-consuming hype machine surrounding it. And I’m very glad I did, because today I’m more convinc

                  Litestar is worth a look
                • Django for Startup Founders: A better software architecture for SaaS startups and consumer apps

                  In an ideal world, startups would be easy. We'd run our idea by some potential customers, build the product, and then immediately ride that sweet exponential growth curve off into early retirement. Of course it doesn't actually work like that. Not even a little. In real life, even startups that go on to become billion-dollar companies typically go through phases like: Having little or no growth fo

                  1