並び順

ブックマーク数

期間指定

  • から
  • まで

1 - 13 件 / 13件

新着順 人気順

python str format float precisionの検索結果1 - 13 件 / 13件

  • RecBole を用いてクックパッドマートのデータに対する50以上のレコメンドモデルの実験をしてみた - クックパッド開発者ブログ

    こんにちは。研究開発部の深澤(@fufufukakaka)です。 本記事では最近面白いなと思って watch しているレコメンド系のプロジェクト RecBole を紹介いたします。また、クックパッドが展開している事業の一つであるクックパッドマートのデータを使って数多くのレコメンドモデルを試す実験も行いました。その結果も合わせて紹介します。 TL;DR: レコメンドモデルは作者実装に安定性がなく、またモデルをどのように評価したかも基準がバラバラで、再現性が難しいとされている(from RecSys 2019 Best Paper) 再現性に取り組むプロジェクトとして 2020年12月に始まった RecBole がある。 RecBole を利用することでなんと 50個以上のレコメンドモデルを大体1コマンドで試せる クックパッドマートでユーザに対してアイテムをレコメンドするシチュエーションを想定

      RecBole を用いてクックパッドマートのデータに対する50以上のレコメンドモデルの実験をしてみた - クックパッド開発者ブログ
    • python_modules.pdf

      Python3 OpenCV / Pillow / pygame / Eel / PyDub / NumPy / matplotlib / SciPy / SymPy / gmpy2 / hashlib, passlib / Cython / Numba / ctypes / PyInstaller / curses / tqdm / JupyterLab / json / psutil / urllib / zenhan / jaconv Copyright © 2017-2025, Katsunori Nakamura 2025 8 19 Python ‘ .py’ Python Python Windows PSF Python py .py Enter macOS Linux PSF Python python3 .py Enter Anaconda Prompt Python p

      • 0.8.0 Release Notes ⚡ The Zig Programming Language

        Tier 4 Support § Support for these targets is entirely experimental. If this target is provided by LLVM, LLVM may have the target as an experimental target, which means that you need to use Zig-provided binaries for the target to be available, or build LLVM from source with special configure flags. zig targets will display the target if it is available. This target may be considered deprecated by

        • はじめての自然言語処理 spaCy 3.0 で Transformer を利用する | オブジェクトの広場

          今更ですが今年の2月に spaCy 3.0 が公開されました。 3.0 で導入された新機能の中で目玉と言えるのは、やはり Hugging Face Transformers (以下、単にTransformers) のサポートや PyTorch, Tensorflow との連携になるでしょう。今回はその辺りを実際に学習を動かしながら紹介したいと思います。 1. はじめに 今回は今年の2月に公開された spaCy 3.0 の話です。 spaCy は第4回でも紹介しましたが、研究者向けというよりは自然言語処理アプリ開発者向けのオープンソース自然言語処理ライブラリになります。日本語を含めた様々な言語の学習済みモデルが存在しており、 spaCy をインストールして、学習済みモデルをダウンロードするだけで、分かち書き、品詞や依存関係の推定、単語や文の類似度の判定など様々な機能を使用することができます。

            はじめての自然言語処理 spaCy 3.0 で Transformer を利用する | オブジェクトの広場
          • 【GROMACS】Umbrella samplingによるMD simulation 【In silico創薬】【SMD】 - LabCode

            Windows 11 Home, 13th Gen Intel(R) Core(TM) i7-13700, 64 ビット オペレーティング システム、x64 ベース プロセッサ, メモリ:32GB Umbrella Samplingの概要と目的Umbrella Samplingは、分子がめったに起こさないような状態変化(たとえば、タンパク質同士が離れるなど)を詳しく調べるための計算手法です。通常の分子動力学(MD)では、エネルギー的に安定な状態にとどまりやすく、重要な変化が起こる確率が低いため、十分な情報が得られません。 たとえば、タンパク質AとBがくっついている状態から、少しずつ離れていく様子を観察したいとき、まずAとBを少しずつ引き離すSteered Molecular Dynamics(SMD)などのシミュレーションで、さまざまな距離の構造を取得します。その中から、0.5nm、0.7

            • NumPy 2.0.0 Release Notes — NumPy v2.4.dev0 Manual

              Getting started What is NumPy? Installation NumPy quickstart NumPy: the absolute basics for beginners Fundamentals and usage NumPy fundamentals NumPy for MATLAB users NumPy tutorials NumPy how-tos Advanced usage and interoperability Using NumPy C-API F2PY user guide and reference manual Under-the-hood documentation for developers Interoperability with NumPy Extras Glossary Release notes 2.4.0 2.3.

              • Stable DiffusionがIntel MacBook Proで動いたのでメモ - cBlog

                PyTorchのバックエンドとしてMPSを使い、Stable DiffusionがM1 Macで動いたと聞いた。MPSはMetal Performance Shaderのことらしい。 ほい? MetalならIntel MacのRadeonでも動くのでは?としてやってみた。 環境 2.3 GHz 8コアIntel Core i9 AMD Radeon Pro 5500M 8 GB macOS Monterey 12.5.1 Homebrewで入れたminiforge 追記4 GitHubに上げました。 github.com 普通に入れる 以下を参考にした: https://rentry.org/SDInstallGuide ダウンロードする。 % git clone https://github.com/CompVis/stable-diffusion.git % cd stable-dif

                  Stable DiffusionがIntel MacBook Proで動いたのでメモ - cBlog
                • はじめての自然言語処理 ELYZA 日本語 Llama 2 指示応答モデルのファインチューニングと vLLM での推論 | オブジェクトの広場

                  今回は Elyza さんの日本語 Llama 2 指示応答モデルをファインチューニングし、vLLM にデプロイして高速に推論してみます。70 億パラメータモデルならギリギリ Tesla T4 x 1 の構成でも float16 で動かせるかと思ったのですが、どうだったでしょうか。vLLM には OpenAI 互換の API インタフェースも備えているので、ついでに LangChain からも接続してみたり。 1. はじめに 今回は Elyza さんが公開されている大規模指示応答言語モデルである、ELYZA-japanese-Llama-2-7b-fast-instruct1 をファインチューニングして vLLM で推論してみます。 そんな訳で今回あまり書くことがなく、動かし方だけサラっと書いて「動きましたー。では良いお年を~。」で締めることにします。 しかし、時代感覚無視の隔月連載でネタを

                    はじめての自然言語処理 ELYZA 日本語 Llama 2 指示応答モデルのファインチューニングと vLLM での推論 | オブジェクトの広場
                  • Mastering Customer Segmentation with LLM | Towards Data Science

                    Unlock advanced customer segmentation techniques using LLMs, and improve your clustering models with advanced techniques Content Table · Intro · Data · Method 1: Kmeans · Method 2: K-Prototype · Method 3: LLM + Kmeans · Conclusion Intro A customer segmentation project can be approached in multiple ways. In this article I will teach you advanced techniques, not only to define the clusters, but to a

                      Mastering Customer Segmentation with LLM | Towards Data Science
                    • はじめての自然言語処理 ELECTRA(BERT の事前学習手法の改良)による固有表現抽出の検証 | オブジェクトの広場

                      今回は BERT における事前学習の改良手法である ELECTRA の検証です。ELECTRA はモデルサイズ、データ、計算量が同一条件であればオリジナルの BERT を凌ぐ性能とのことなので結果が楽しみなところです。事前学習をした後のファインチューニングは、いつも livedoor News Corpus の文書分類ばかりだったので、今回は固有表現抽出を試すことにしました。 1. はじめに 今回は BERT における事前学習の改良手法である ELECTRA 1 の検証です。 BERT に関しては 第3回 で取り上げていますが、トークン化が Sentencepiece である為、トークン単位での処理に難がありました2。今回は ELECTRA を試すにあたり、そのあたりの対応も入れ、 Megagon Labs さんから公開されている UD_Japanese-GSD v2.6-NE 3 を使っ

                        はじめての自然言語処理 ELECTRA(BERT の事前学習手法の改良)による固有表現抽出の検証 | オブジェクトの広場
                      • JSON is not JSON Across Languages | Dochia CLI Blog

                        Introduction: These Aren’t the JSONs You’re Looking For JSON (JavaScript Object Notation) was designed as a simple, lightweight, and human-readable data interchange format, often positioned as a more accessible alternative to XML. It has become the de facto standard for web APIs and system integration. However, while the specification itself is straightforward, different programming languages and

                          JSON is not JSON Across Languages | Dochia CLI Blog
                        • はじめての自然言語処理 MixCSE による教師なし文章ベクトル生成 | オブジェクトの広場

                          今回は教師なしの文章ベクトル化手法である MixCSE の検証です。教師なし学習ですから教師ありの手法よりは精度的に不利でしょうが、局面によっては役に立つケースもあるのでは?と試してみることに。公開されているコードは transformers ベースなのですが、今回は Colab の TPU で動かしてみたので、その方法も紹介しますね。 1. はじめに 今回は教師なしの文章ベクトル化手法である MixCSE1 の検証をしてみました。 本連載では文章ベクトル化のモデルとして、 Sentence BERT を取り上げたこと(第9回, 第18回)がありますが、品質の良いベクトルを生成する為には大量かつ良質の教師データが必要でした。 法律や特許のような特定領域に特化した文章を扱う局面では、対象領域の文書で学習したモデルを使いたいところですが、特定領域限定の都合良いデータはなかなか手に入りません。そ

                            はじめての自然言語処理 MixCSE による教師なし文章ベクトル生成 | オブジェクトの広場
                          • ゼロから始める自作LLM|Masayuki Abe

                            今回は、Google Colabで自作LLMの完成を目指す記事となります。 既成LLMをどのように使うかの記事を書いて来ましたが、LLMをどのように作るかの記事がなかったので今回書いてみることにしました。 GitHubに自作LLMを作っているページがありましたので、利用させて頂いております。 GitHubのこちらのページは凄く有益ですので、一度読んでみることをおすすめいたします。 今回は、上記ページのコードを参考に、Google Colabで実装していきます。 今回は、自作LLMを完成させてみようということを目的に書きますので、精度などは問題がありますが、記載のとおりGoogle Colabに貼り付けてもらえれば自作LLMの完成という成功体験を積むことに主眼を置いています。 ハイパーパラメータを変更すると考えることが増えるので、原則変更しない方向でいきます。 Google Colabのリソ

                              ゼロから始める自作LLM|Masayuki Abe
                            1