タグ

数学に関するshimanpのブックマーク (131)

  • 70年以上未解決であった「ミルズの定数の無理数性」が解決か!? - INTEGERS

    旧知の仲である数学者 齋藤 耕太 氏(筑波大学、学振PD)が、昨日数学の未解決問題を解決したとするプレプリントをプリプリントサーバーarXivに投稿されました: arxiv.org 論文自体は「現状分かるところまで研究しつくす」という素晴らしい態度で執筆されているので主定理の記述は十行ありますが、その特別な場合をとり出した ミルズの定数は無理数である という定理(これは論文のタイトルにもなっています)が、ある程度長い期間未解決であったと思われる数学上の問題の解決を意味しています。 無理数性の証明はかっこいい 実数という数学的対象は有理数と無理数に分けられます。有理数は などのように という表示を持つ実数であり(ここでは自然数は正の整数を意味するものとします)、有理数ではない実数のことを無理数といいます。 高校数学でも証明込みで学ぶことと思いますが、無理数の典型例としては があげられます。こ

    70年以上未解決であった「ミルズの定数の無理数性」が解決か!? - INTEGERS
  • 【制限時間15秒】「17×115=」を暗算できる?

    東京大学経済学部卒。プロ算数講師。志進ゼミナール塾長。 プロ家庭教師、SAPIXグループの個別指導塾の塾講師など20年以上の豊富な指導経験があり、常にキャンセル待ちの出る人気講師として活躍している。 現在は、学習塾「志進ゼミナール」を運営し、小学生から高校生に指導を行っている。毎年難関校に合格者を輩出している。 算数が苦手な生徒の偏差値を45から65に上げて第一志望校に合格させるなど、着実に学力を伸ばす指導に定評がある。暗算法の開発や研究にも力を入れている。 ずっと算数や数学を得意にしていたわけではなく、中学3年生の試験では、学年で下から3番目の成績だった。数学の難しい問題集を解いても成績が上がらなかったので、教科書を使って基礎固めに力を入れたところ、成績が伸び始める。その後、急激に成績が伸び、塾にほとんど通わず、東大と早稲田大の現役合格を達成する。この経験から、「基に立ち返って、深く学

    【制限時間15秒】「17×115=」を暗算できる?
  • 150 分で学ぶ高校数学の基礎

    [重要なお知らせ (2023/8/12)] 現在,スライドの p.10 に不十分な記述があります.ルートの答えは 0 以上の数に限定することに注意してください (たとえば -3 を 2 乗しても 9 ですが,ルート 9 は -3 ではありません).なお,現在筆者のパソコンが修理中でデータがないので,修…

    150 分で学ぶ高校数学の基礎
  • 君はインド最大(多分世界最大)の無料MOOCの「NPTEL」を知っているか。

    俺はさっきまで知らなかった。これはやばすぎるので増田に書いて広めようと思う。(追記にも書いたが、公式の英語字幕があるので聞き取れなくても心配しないでほしい。) 以下のリンクから飛べる。 https://nptel.ac.in/courses リンク先を見ればすぐ分かると思うが、驚くべきは、カバーしている分野の広さだ。アメリカのMOOC(Udacityだの、Udemyだの)は、表層的な、「すぐ使える技術」の講座ばかりで、オペレーティングシステムやコンピュータネットワーク、あるいは偏微分方程式や代数学といった、コンピュータサイエンスや数学等の基礎学問のような分野はあまりカバーされていない。(主観だが、恐らく正しいはずだ。Udacityのジョージア工科大のコンピュータサイエンスの授業は別だが、数は少ないし、それにしても数学はカバーしていない。) しかし、この「NPTEL」では、自分に関わりのある

    君はインド最大(多分世界最大)の無料MOOCの「NPTEL」を知っているか。
  • 機械学習が独学できる日本語Youtube難易度別まとめ - Qiita

    こんにちは。 在宅の機会が増えて以来Youtubeを見る機会が増え、機械学習などが勉強できるチャンネルをいくつか探しては見ていました。探した中でよかったと思ったものをメモしていたのですが、せっかくなので公開したいと思います。日語のソースがあるもののみ対象にしており、『これ無料でいいのか?』と思ったチャンネルを紹介したいと思います。主観で以下のレベルに分けましたがあくまで参考程度にお願いいたします。 基Pythonを触ってみた人 Pythonの説明・動かし方などを解説していて、動画によっては踏み込んだ内容になる 応用:アルゴリズムを使いこなしたい人 「model.fit(X, y)して動かしてみた」よりも踏みこみ、Python自体の説明は少ない 発展:研究開発もしたい人 最新の手法の仕組みの理解などが主眼であり、Pythonの解説はほぼ無い もしおすすめのチャンネルございましたらぜひコ

    機械学習が独学できる日本語Youtube難易度別まとめ - Qiita
  • しっかり学ぶ数理最適化 ヒューリスティック編 - Qiita

    これはどんな記事? 記事は、私がヒューリスティック関連の知識をまとめることになった際に作成したJupyter Notebookを、Qiitaの記事へと改変したものです。 前提としてこれは梅谷俊治先生の「しっかり学ぶ数理最適化 モデルからアルゴリズムまで」という(以下、教科書と表記)の内容に準拠しています。 そしてその内容の多くは、ありがたいことにネット上の様々な形で公開されており、梅谷先生によるスライド1やスライド2、日オペレーションズ・リサーチ学会(以下、ORと表記)での記事1や記事2、そしてORの他の方の記事1や記事2などでも類似した内容を見ることが可能です。 (そしてそれ故に、記事を公開させて頂いています。流石に家の方がネット上で公開されていない内容を書くのは、例え権利的に問題がないとしても気が引けるので……) また、この記事は、それらの内容を踏まえた上で、私がネット上の様

    しっかり学ぶ数理最適化 ヒューリスティック編 - Qiita
  • 数学カフェ 確率・統計・機械学習回 「速習 確率・統計」

    The document describes various probability distributions that can arise from combining Bernoulli random variables. It shows how a binomial distribution emerges from summing Bernoulli random variables, and how Poisson, normal, chi-squared, exponential, gamma, and inverse gamma distributions can approximate the binomial as the number of Bernoulli trials increases. Code examples in R are provided to

    数学カフェ 確率・統計・機械学習回 「速習 確率・統計」
  • 旧限界数学ゼミガール

    某所に投稿していた限界数学ゼミガールのまとめです(2019.11.27 ~ 2019.12.22) 公理的集合論と数理論理学がメインです。 第一話 「巨大基数の崩壊」 第二話 「クレパの木」 第三話 「ペアノの公理系」 第四話 「ストーンの表現定理」 第五話 「ゲーデルの不完全性定理」 おまけ 最初期の落書きです この頃から寝ている子が頭が良いキャラ(議論が詰まった時のブロックバスター)というのはぼんやりながら固まってました(笑)

    旧限界数学ゼミガール
  • Pythonでニューラルネットワークを書いてみよう

    連載目次 連載(基礎編)の目的 スクラッチ(=他者が書いたソースコードを見たりライブラリーを使ったりせずに、何もないゼロの状態からコードを記述すること)でディープラーニングやニューラルネットワーク(DNN:Deep Neural Network、以下では「ニューラルネット」と表記)を実装して学ぶ系の書籍や動画講座、記事はたくさんあると思います。それらで学んだ際に、「誤差逆伝播」(バックプロパゲーション)のところで挫折して、そこはスルーしている人は少なくないのではないでしょうか。個々の数式や計算自体を理解していても、何となく全体像がつかめずに、 と自信を持って言えない人も多いのではないかと思います。 連載(基礎編)はそういった人に向けた記事になります。この記事はニューラルネットの仕組みを、数学理論からではなくPythonコードから学ぶことを狙っています。「難しい高校以降の数学は苦手だけど

    Pythonでニューラルネットワークを書いてみよう
  • AIで数学の新たな定理発見 英DeepMindと数学者がNatureに共同論文

    新たな数学の定理の発見や、未証明の予想の解決にAIが役立つ──そんな研究結果を、囲碁AIAlphaGo」などで知られる英DeepMindが発表した。順列に関する新しい定理を発見した他、ひもの結び目を数学的に研究する「結び目理論」についても、異なる数学の分野をつなぐ、予想していなかった関係性を見つけたという。 DeepMindは、豪シドニー大学と英オックスフォード大学の数学者とともに数学研究を支援するための機械学習フレームワークを構築。これまでも数学者は、研究対象を調べるためにコンピュータを使い、さまざまなパターンを生成することで発見に役立ててきたが、そのパターンの意義は数学者自身が考察してきた。しかし、研究対象によっては何千もの次元があることから、人間による考察も限界があった。 今回開発したアルゴリズムは、こうしたパターンを検索する他、教師あり学習を基にその意味を理解しようと試みるという

    AIで数学の新たな定理発見 英DeepMindと数学者がNatureに共同論文
  • できるだけ嘘を書かずに計算量やオーダーの説明をしようとした記事 - えびちゃんの日記

    計算量についてのお話です。対象は、プログラミング経験はあるが計算量のことを知らない初心者から、計算量のことを知っているつもりになっている中級者くらいです。 数式を見たくない人にとっては読むのが大変かもですが、深呼吸しつつ落ちついて読んでくれるとうれしいです。 それから、この記事が自分には合わないな〜と思ったときは、(別の記事を Qiita とかで検索するよりも)この記事の一番下の 参考文献 にあるを読むことをおすすめします。Amazon の試し読みで無料で読めます*1。 TL; DR 関数の増加度合いのことをオーダーと呼ぶよ 計算量は、入力サイズ(など)を受け取ってアルゴリズムの計算回数(など)を返す関数だよ その関数のオーダーについての議論がよく行われるよ オーダーを上から抑えるときは \(O\)、下から抑えるときは \(\Omega\) を使うよ オーダーを上下両方から抑えたいときは

    できるだけ嘘を書かずに計算量やオーダーの説明をしようとした記事 - えびちゃんの日記
  • 技術ようつべチャンネル集 - Qiita

    役立つYouTubeのチャンネルまとめ 数学、物理、アルゴリズム、プログラミング、などなど自分が使う技術に役立ちそうだな、困ったときによく見たなと思うチャンネルを紹介する。 取っ掛かり、ハマりがち、コツみたいな物が拾える。数学がメイン。随時更新していくつもり。 当たり前だけどちゃんとも読んで勉強するんだぞ。 背景 YouTubeは視聴する登録チャンネルの数が増えると、チャンネルが埋もれて発掘困難になりがち (chrome拡張でできるチャンネルのフォルダ分け機能は、ぽちぽち登録するのも面倒で、そのフォルダの中から掘り出すのも難しい) モチベが上がる(おべんつよしたい)チャンネルを探してるうちに湧いてくる、わんにゃんコンテンツ(だいちゅき)に流され一日が終わるため、 モチベが上がる有用なチャンネルにすぐにたどり着くために、よく使うQiitaに列挙しておくことにした Streamや大学専用サイ

    技術ようつべチャンネル集 - Qiita
  • グラフ理論入門 | DevelopersIO

    こんにちは、ドイツのモナでございます〜 いろんなサイエンスにおいてグラフ理論がとても重要な用具となっていますが、グラフ理論ってそもそも何なのかご存知ない方も少なくもないですね。 ということで、今日は簡単にグラフ理論の基や用語など紹介したいと思います!なお、入門のため誰にでも分かるように数学的な定義は避けるようにします。 また、グラフ理論の応用は別の話ですので今回は応用の話しません〜 なぜグラフが面白いのか 具体的な応用の話はしませんが、たくさんの分野においてグラフ理論が重要となっています。 ネットワーク(例:トポロジー、ルーティングアルゴリズム) AI(例:ニューラルネットワーク) コンピューターサイエンス(例:ファイルシステム) 社会科学(例:ソーシャルネットワーク分析) 皆さんの生活の中(例:カーナビの最短ルートの計算) グラフ理論とは? ここで議論するグラフというのは、よく思い浮か

    グラフ理論入門 | DevelopersIO
  • 数学概念が人類に生まれつきそなわっていないことを示す、数と言語人類学──『数の発明――私たちは数をつくり、数につくられた』 - 基本読書

    数の発明――私たちは数をつくり、数につくられた 作者:ケイレブ・エヴェレット発売日: 2021/05/08メディア: 単行 はじめに 数の概念は、生まれつき備わっているものではない 数の概念がないなんてことがあるのか? 1〜3 おわりに はじめに 『ピダハン──「言語能」を超える文化と世界観』という、左右や数字の概念を持たない珍しい言語の持ち主であるアマゾンの少数民族について書かれたノンフィクションがある。この、少数民族の話ながらもそこからチョムスキーの言語能否定の話や、幸せとは、文化とは、宗教とは、といった話に繋がっていく普遍的な話を展開しており、そのユーモア溢れる筆致もあって世界的に話題になっていった。 今回取り上げたい『数の発明』は、その『ピダハン』の著者ダニエル・L・エヴェレットの息子、ケイレブ・エヴェレットによる著書である。親子揃って言語学者とは凄いが、ケイレブは父親であ

    数学概念が人類に生まれつきそなわっていないことを示す、数と言語人類学──『数の発明――私たちは数をつくり、数につくられた』 - 基本読書
  • Hiroshi Takahashi

    Skip to the content. 機械学習の研究者を目指す人へ 機械学習の研究を行うためには、プログラミングや数学などの前提知識から、サーベイの方法や資料・論文の作成方法まで、幅広い知識が必要になります。レポジトリは、学生や新社会人を対象に、機械学習の研究を行うにあたって必要になる知識や、それらを学ぶための書籍やWebサイトをまとめたものです。 目次 プログラミングの準備 Pythonを勉強しよう 分かりやすいコードを書けるようになろう 数学の準備 最適化数学を学ぼう 基的なアルゴリズムとその実践 機械学習の全体像を学ぼう 基的なアルゴリズムを学ぼう 深層学習の基礎を学ぼう scikit-learnやPyTorchのチュートリアルをやってみよう サーベイの方法 国際会議論文を読もう Google Scholarを活用しよう arXivをチェックしよう スライドの作り方 論文の

  • アルゴリズム・AtCoder のための数学【後編:数学的考察編】 - Qiita

    0. はじめに こんにちは、大学 1 年生になったばかりの E869120 です。記事は、 アルゴリズム・AtCoder のための数学【前編:数学的知識編①】 アルゴリズム・AtCoder のための数学【中編:数学的知識編②】 からの続きです!!! ※前編・中編を読んでいなくても理解できる、独立したトピックになっているので、ご安心ください。 後編から読む方へ 21 世紀も中盤に入り、情報化社会が急激に進行していく中、プログラミング的思考やアルゴリズムの知識、そしてアルゴリズムを用いた問題解決力が日々重要になっています。 しかし、アルゴリズム構築能力・競プロの実力は、単純にプログラミングの知識を学ぶだけでは身につきません。近年、数学的なスキルが重要になりつつあります。実際、私はこれまでの経験で「数学の壁で躓いた競プロ参加者」をたくさん見てきました。そこで記事では、 AtCoder のコン

    アルゴリズム・AtCoder のための数学【後編:数学的考察編】 - Qiita
  • アルゴリズム・AtCoder のための数学【前編:数学的知識編①】 - Qiita

    こんにちは、大学 1 年生になったばかりの E869120 です。 私は競技プログラミング趣味で、AtCoder や日情報オリンピックなどに出場しています。ちなみに、2021 年 4 月 7 日現在、AtCoder では赤(レッドコーダー)です。 記事では、アルゴリズムの学習や競技プログラミングで使える数学的な部分を総整理し、それらについて解説したいと思います。前編・中編では数学的知識、後編(2021/4/26 公開予定)では数学的考察の側面から書いていきます。 【シリーズ】 アルゴリズム・AtCoder のための数学【前編:数学的知識編①】 ← 記事 アルゴリズム・AtCoder のための数学【中編:数学的知識編②】 アルゴリズム・AtCoder のための数学【後編:数学的考察編】 1. はじめに 21 世紀も中盤に入り、情報化社会(いわゆる「IT 化」)が急激に進行していく中、

    アルゴリズム・AtCoder のための数学【前編:数学的知識編①】 - Qiita
  • 数理計画法テキスト

    学習・研究用テキスト(最適化,線形計画法,内点法,数理計画法) このページでは最適化,線形計画法,内点法,数理計画法などの分野に関しての学習用テキストを公開しています. テキストの特徴として 定理などの証明を詳しく記述 多くの例を用いて説明 となっているため,学習しやすいテキストとなっております.

  • コグニカル

    コグニカルは、足りない知識を掘り下げて理解する学習サイトです。

  • 線形代数とは?初心者にもわかりやすい解説 | HEADBOOST

    「線形代数を簡単に理解できるようになりたい…」。そう思ったことはないでしょうか。当ページはまさにそのような人のためのものです。ここでは線形代数の基礎のすべてを、誰でもすぐに、そして直感的に理解できるように、文章だけでなく、以下のような幾何学きかがく的なアニメーションを豊富に使って解説しています。ぜひご覧になってみてください(音は出ませんので安心してご覧ください)。 いかがでしょうか。これから線形代数の基礎概念のすべてを、このようなアニメーションとともに解説していきます。 線形代数の参考書の多くは、難しい数式がたくさん出てきて、見るだけで挫折してしまいそうになります。しかし線形代数は来とてもシンプルです。だからこそ、これだけ多くの分野で活用されています。そして、このシンプルな線形代数の概念の数々は、アニメーションで視覚的に確認することで、驚くほどすんなりと理解することができます。 実際のと

    線形代数とは?初心者にもわかりやすい解説 | HEADBOOST