タグ

ブックマーク / machine-learning.hatenablog.com (2)

  • ベイズ学習の勉強に参考になる資料 - 作って遊ぶ機械学習。

    おつかれさまです.今回はタイトルの通り,ベイズ学習を勉強する上で参考になる教科書やウェブの資料,論文等を紹介したいと思います. ベイズ学習は確率推論に基づいた機械学習アルゴリズムの構築論です.ベイズ学習を使えば,あらゆる形式のデータに対して,未観測値の予測や隠れた構造を発見するための統一的なアプローチをとることができるため,特に現代の機械学習アルゴリズムを深く理解し使いこなすためには必須の方法論になっています. 1, ベイズ学習の位置づけ まず,データサイエンスにおける他の方法論と,ベイズ学習の位置づけを簡単に俯瞰したいと思います. 僕の知る限り,ベイズ学習は1990年代ごろから登場してきた機械学習の方法論で,既存の学習アルゴリズムを確率モデルによって構築し,学習や予測の計算をすべて確率推論(条件付き分布と周辺分布の計算)で解決してしまおうという試みによってはじまりました.これにより,従来

    ベイズ学習の勉強に参考になる資料 - 作って遊ぶ機械学習。
  • 機械学習の4つのアプローチ - 作って遊ぶ機械学習。

    おつかれさまです。今日はちょっと趣を変えて、近年のいわゆる「機械学習」という技術のアプローチをカジュアルに少しカテゴリ分けしたいと思います。 といっても、自分はアカデミックの研究者ではなく大量の論文を読み漁るということもほとんどしないので、理論的なバックグラウンドに基づいたソリッドなカテゴリ分けはできません。ここで紹介するのはあくまで、実用上の機械学習技術者から見た視点で「こんな傾向があるかなぁ」くらいの気持ちで書いたものです。 <代表的な4つのアプローチ> 1、最適化(目的関数ベース) まず始めは最適化手法をベースにした機械学習のアルゴリズムです。たぶん一番例が多いんじゃないでしょうか。 ここでは、ある解きたい課題を目的関数によって定式化し、適切な最適化手法を使って解きます。伝統的な線形回帰や線形識別はもちろん、主成分分析(PCA)や非負行列因子分解(NMF)なんかもこの枠組みで解かれる

    機械学習の4つのアプローチ - 作って遊ぶ機械学習。
  • 1