タグ

関連タグで絞り込む (1)

タグの絞り込みを解除

Algorithmとdeeplearningに関するshomaのブックマーク (2)

  • PFN発のディープラーニングフレームワークchainerで画像分類をするよ(chainerでニューラルネット1) - 人工言語処理入門

    1日ちょっと前に、PFNから新しいディープラーニングフレームワーク"chainer"が公開されました[1]。触ってみた感じの特徴は、pythonのコードで完結するので、システムに組込みしやすそうで、処理の内容も読みやすい。同時に、処理の内容に興味を持たずに使うには難しいという思いでした。ベースにしてあたらしいツールを作るには最適に感じるので、これから、chainerをベースにした様々な用途のツールができるのが期待されます。 CPU用インストール ~ MNISTのトレーニング ここでは、chainerのチュートリアル[1]に書いてあるとおりにインストールと初期タスクをおこなうだけです。 インストールは、githubからソースを落としてきてpython setup.py installでも、pipで入れてもいいと思います。とりあえずここではpip pip install chainer これで

    PFN発のディープラーニングフレームワークchainerで画像分類をするよ(chainerでニューラルネット1) - 人工言語処理入門
  • ディープラーニングでおそ松さんの六つ子は見分けられるのか 〜実施編〜 - bohemia日記

    前回、おそ松さんたちをディープラーニングで見分けるため、準備編としておそ松さんたちの顔画像を5644枚集めました。 今回はそれを用いて、ディープラーニングで学習させ、判別器を作って検証します。 集めた画像 人物 枚数 例 おそ松 1126 から松 769 チョロ松 1047 一松 736 十四松 855 とど松 729 その他 383 使用フレームワーク 最近GoogleからTensorFlowという新しいディープラーニングのフレームワークが発表されました。 会社のブログに使い方書いたのですが、まだ慣れていないので、今回はchainerを使います。こちらだとすぐに高い成果を上げているImageNetのNINモデル、4層畳み込みニューラルネットワークがサンプルで入っていますので、こちらを改良して使います。 imageNetの使い方は、こちらやこちらを参考にしています。 訓練データセット Im

    ディープラーニングでおそ松さんの六つ子は見分けられるのか 〜実施編〜 - bohemia日記
  • 1