以前、「非情報系が機械学習を使う研究をしたいとき」という記事を書きましたが、内容の半分はサイボウズ・ラボユースの宣伝だったんで、今回はタイトル詐欺じゃあないことも書きます。 いままで機械学習や深層学習に縁のなかった人が、それを使った研究を始めたいとなったとき、共通して直面する大きな課題は「何を優先的に勉強したらいいか」と「実験用の環境(PC)をどのように整えたらいいか」でしょう。 今回は何から勉強する? という話。 機械学習そのもの(特に自分が使おうとしているモデル)を学ぶのは必須に決まっているので、機械学習を使う上で必要となる前提知識を学ぶ優先順位について考えてみます。 機械学習(深層学習を含む)を使う上でキーになる前提知識は、数学(特に解析・線形代数・統計)とプログラミングを含む情報科学であることは意見の一致するところだと思います。 情報系の人なら、情報科学はさすがにやってます。プログ