Sign in
この記事は GMOアドマーケティングAdvent Calendar 2020 23日目の記事です。 みなさんこんにちは、GMOアドマーケティングのM.H.と申します。 突然ですがみなさんは機械学習する時にどのような環境で実行していますか?Google Colaboratoryでは、制限はありますが無料でTPUを使用し、高いパフォーマンスで学習を進めることができます。 今回はこのTPUを使って、モデル内のハイパーパラメータを自動で探索してくれるKeras Tunerを使っていく方法と注意点についてお話しします。 そもそも、TPUとは TPU(Tensor Processing Unit)とは、Googleが開発した機械学習特化型のプロセッサのことで、基本的にGPUよりも高速で学習を進めることができます。計算量が多く、バッチサイズが大きい場合に特にその効果を発揮します。 私たちがこのパワ
はじめに 〜衛星データとは〜 人工衛星データとは、人工衛星を利用した“リモートセンシング”によって取得されたデータを指します。 これまで人工衛星データは専門ツールや大容量データ処理基盤が必要なため、利用できる組織は大学機関や一部の専門機関が限られていましたが、昨今のオープンソース・ライブラリの普及やデータ処理基盤のクラウド利用により、一般組織でも気軽に人工衛星データを扱える外部環境が整ってきました。 衛星データを利用することで、これまで取得することができなかった様々な場所・時間・対象の状態をビッグデータで解析することが期待できます。 そこで本記事では、どの様にデータを扱うのかを、衛星データ解析の専門ツールを利用せず(最も身近なツールの一つであるpythonを利用)、誰でも気軽に試すために無償で利用方法を紹介していきたいと思います。 また、今回はビジネスや社会実装に利用イメージが沸きやすい衛
機械学習エンジニア界隈で話題沸騰となっているGoogle Colaboratory(グーグル・コラボレイトリー)。本記事では概要とGoogle Colabの知っておくべき基本的な使い方をまとめました! すでに機械学習をやっている方や、これから機械学習を学んでみたいと考えている方で、下記のような事を感じたことはありませんか? 「訓練やデータ処理をやるのにローカルPCだと処理に時間がかかりすぎる」 「機械学習用にクラウド環境を立てたけど…思ったより費用が高い」 「機械学習は色々とライブラリが多くて環境構築がしんどい」 もし一つでも当てはまるものがあれば、Google Colabがそんな悩みを解決してくれます!機械学習の開発環境の新基準となる可能性も高いGoogle Colab、概要や基本的な使い方をみていきましょう。 Google Colaboratoryとは? Google Colab(略式
リリース、障害情報などのサービスのお知らせ
最新の人気エントリーの配信
処理を実行中です
j次のブックマーク
k前のブックマーク
lあとで読む
eコメント一覧を開く
oページを開く