昨日ありました、PFIでのセミナーでの発表資料です。 研究開発のチームの紹介の後に、2009年サーベイした論文の中で面白かった論文を 機械学習、データ構造、画像処理で紹介してます 紹介した話は - Multi-class CW (Multi-class Confidence Weighted Learning,) - AROW (Adaptive Regularization Of Weight Vector) - Online-EM algorithm - 全備簡潔木 (Fully-functional Succinct Tree) - 圧縮連想配列 (compressed function) - PatchMatch です。 #資料中の簡潔木の表現方法のDFUDSの紹介でtxも使用と書いてあるのは、公開しているtxでは、 LOUDSのみをつかっていますので正確ではありませんでした。これ
![PFIセミナー資料: 研究開発2009 - DO++](https://cdn-ak-scissors.b.st-hatena.com/image/square/a0aa051048cb3afda5716214159b2dba29aaa425/height=288;version=1;width=512/http%3A%2F%2Fhillbig.cocolog-nifty.com%2F.shared-cocolog%2Fnifty_managed%2Fimages%2Fweb%2Fogp%2Fdefault.png)