タグ

2012年6月27日のブックマーク (2件)

  • 相関と因果について考える:統計的因果推論、その(不)可能性の中心

    3. 今回のもくじ イントロ -『相関と因果』再訪 基礎編 - 因果概念の変遷: 心の習慣 から 反事実 へ - 因果と確率論を繋ぐ:Pearlのdo演算子 実務編 - 重回帰とは因果構造分解酵素である - バックドア基準による変数選択 考察 - 因果推論の不可能性, モデル選択の3視点 4. 相関と因果は一致しない 86 女 性 84 の 平 82 均 寿 80 命 78 (歳) 30 34 38 NHKの放送受信契約数(百万) http://www.stat.go.jp/data/nihon/02.htm 元データ→ http://pid.nhk.or.jp/jushinryo/know/pdf/toukei2010.pdf 5. 相関と因果は一致しない 86 p < 0.00000002 女 2 性 84 R = 0.99 の 平 82 均 寿 80 命 78 (歳) 30 34 3

    相関と因果について考える:統計的因果推論、その(不)可能性の中心
  • 木メモ - Negative/Positive Thinking

    はじめに 立派な庭師になるために、木についてちょっと調べてみたので、まとめておく。 木(構造)とは 閉路を含まない無向グラフを「森」という 連結な森を「木」という 与えられた頂点が全てつながっていて、閉路を含んでいない 閉路を含まない有向グラフは「DAG(Directed acyclic graph)」という ある頂点を根(Root)としてもつ木を「根付き木」という 2点v,wが辺を持ち、vの方が根に近い場合、vを「親」、wを「子」という 2点v,wについて、根とvとの経路にwが存在する場合、wはvの「先祖」、vはwの「子孫」という 子を持たない頂点を「葉」という 根から各点への経路の長さ(1辺を1とする)を「高さ」という 各点の子の数が常にn子の木を「n分木」という 連結グラフGについて、閉路ができなくなるまで辺を除去し続けると、残ったものは「全域木」となる 根付き木を探索などに用いるこ

    木メモ - Negative/Positive Thinking