抽象的に理由を言えば、 実数(複素数)には、いくつかの公理があります。 その中の一つに可換体という代数的概念を認めているからです。 わかりやすくいいますと、実数の集合Rは代数的には実数体とも呼び、可換体なわけです。 可換体Fの定義は「Fの0元以外の元は全てFの中に逆元をもつ単位的可換環F(単位元1を含んでいて、乗法に関して交換可能な環F)」のことです。 環の定義も書いておけば、集合Rが環であるとは、 任意の元a,b,c∈Rに対して、「+」と乗法が定義されていて、つまり、a+b∈R,ab∈Rであり、 (1)(a+b)+c=a+(b+c) (2)a+b=b+a (3)a+d=d+a=aとなるd∈Rがある。(このdを0と書く。) (4)a+a'=a'+a=0となるa'∈Rがある。(このa'を-aと書く。) (5)a(b+c)=ab+bc, (a+b)c=ac+bc (6)a(bc)=(ab)c