タグ

データとメールに関するsotukenyouのブックマーク (1)

  • ロジスティック回帰 - Wikipedia

    ロジスティック回帰(ロジスティックかいき、英: Logistic regression)は、ベルヌーイ分布に従う変数の統計的回帰モデルの一種である。連結関数としてロジットを使用する一般化線形モデル (GLM) の一種でもある。1958年にデイヴィッド・コックス(英語版)が発表した[1]。確率の回帰であり、統計学の分類に主に使われる。医学や社会科学でもよく使われる[要出典]。 モデルは同じく1958年に発表された単純パーセプトロンと等価であるが、scikit-learnなどでは、パラメータを決める最適化問題で確率的勾配降下法を使用する物をパーセプトロンと呼び、座標降下法や準ニュートン法などを使用する物をロジスティック回帰と呼んでいる。 概要[編集] ロジスティック回帰モデルは以下のような形式である。x が入力で、pが確率(出力)、αとβがパラメータ。

    ロジスティック回帰 - Wikipedia
  • 1