タグ

科学とWikipediaに関するsotukenyouのブックマーク (11)

  • t検定 - Wikipedia

    この記事は検証可能な参考文献や出典が全く示されていないか、不十分です。出典を追加して記事の信頼性向上にご協力ください。(このテンプレートの使い方) 出典検索?: "T検定" – ニュース · 書籍 · スカラー · CiNii · J-STAGE · NDL · dlib.jp · ジャパンサーチ · TWL(2015年9月) t検定(ティーけんてい)とは、帰無仮説が正しいと仮定した場合に、統計量がt分布に従うことを利用する統計学的仮説検定の総称である。母集団が正規分布に従うと仮定するパラメトリック検定法であり、t分布が直接、もとの平均や標準偏差にはよらない(ただし自由度による)ことを利用している。2組の標について平均に有意差があるかどうかの検定などに用いられる。統計的仮説検定の一つ。日産業規格では、「検定統計量が,帰無仮説の下でt分布に従うことを仮定して行う統計的検定。」と定義してい

  • バタフライ効果 - Wikipedia

    「バタフライ・エフェクト」と「バタフライエフェクト」はこの項目へ転送されています。その他の用法については「バタフライ・エフェクト (曖昧さ回避)」をご覧ください。 バタフライ効果(バタフライこうか、英: butterfly effect)は、力学系の状態にわずかな変化を与えると、そのわずかな変化が無かった場合とは、その後の系の状態が大きく異なってしまうという現象[1]。カオス理論で扱うカオス運動の予測困難性、初期値鋭敏性を意味する標語的、寓意的な表現である[2]。 気象学者のエドワード・ローレンツによる、「蝶がはばたく程度の非常に小さな撹乱でも遠くの場所の気象に影響を与えるか?」という問い掛けと、もしそれが正しければ、観測誤差を無くすことができない限り、正確な長期予測は根的に困難になる、という数値予報の研究から出てきた提言に由来する[3]。 ローレンツ方程式における初期値鋭敏性(バタフラ

    バタフライ効果 - Wikipedia
  • 神経言語プログラミング - Wikipedia

    神経言語プログラミング(しんけいげんごプログラミング、神経言語学的プログラミングとも, Neuro-Linguistic Programming: NLP)は、ジョン・グリンダー(言語学者)とリチャード・バンドラーによって提唱された、コミュニケーション、能力開発、心理療法へのアプローチを目指す技法である。人間は客観的な現実を理解することはできないというポストモダン的な立場を取り、主観的経験の構造の研究によって記述された「メタ学問」である[1][2]。個人の主観性・主観的な経験に大きく焦点を当てた自己啓発の体系を持つ[1]。 信念を、能力・行為・環境の間、アイデンティティとスピリチュアリティの間にあると考え、信念を変えることで真の潜在能力を発揮できるようになることを目指す[1]。神経言語プログラミングという名称は、人間の行動は神経学的な過程から始まること、人間は考えをまとめたり他者と交流する

  • 認知科学 - Wikipedia

    英語版記事を日語へ機械翻訳したバージョン(Google翻訳)。 万が一翻訳の手がかりとして機械翻訳を用いた場合、翻訳者は必ず翻訳元原文を参照して機械翻訳の誤りを訂正し、正確な翻訳にしなければなりません。これが成されていない場合、記事は削除の方針G-3に基づき、削除される可能性があります。 信頼性が低いまたは低品質な文章を翻訳しないでください。もし可能ならば、文章を他言語版記事に示された文献で正しいかどうかを確認してください。 履歴継承を行うため、要約欄に翻訳元となった記事のページ名・版について記述する必要があります。記述方法については、Wikipedia:翻訳のガイドライン#要約欄への記入を参照ください。 翻訳後、{{翻訳告知|en|Cognitive science|…}}をノートに追加することもできます。 Wikipedia:翻訳のガイドラインに、より詳細な翻訳の手順・指針についての

    認知科学 - Wikipedia
  • サイフォン - Wikipedia

    この記事は検証可能な参考文献や出典が全く示されていないか、不十分です。 出典を追加して記事の信頼性向上にご協力ください。(このテンプレートの使い方) 出典検索?: "サイフォン" – ニュース · 書籍 · スカラー · CiNii · J-STAGE · NDL · dlib.jp · ジャパンサーチ · TWL (2019年2月) サイフォンの原理のイラスト サイフォン(サイホン[1]、古希: σίφων[注 1]、英: siphon[2])とは、隙間のない管を利用して、液体をある地点から目的地まで、途中出発地点より高い地点を通って導く装置であり、このメカニズムをサイフォンの原理と呼ぶ。 紀元前1500年頃の古代エジプトのレリーフには、大きな保存瓶から液体を取り出すのに使われるサイフォンが描かれている[3][4]。 紀元前6世紀のサモス島のピタゴラスのカップと紀元前3世紀に古代ギリシア

    サイフォン - Wikipedia
  • 音速 - Wikipedia

    固体・液体・気体と音速 物質自体が振動することで伝わるため、物質の種類により決まる物性値の1種(弾性波伝播速度)である。 音速は、特に物質の相変化による影響を大きく受け、同じ物質では、固体が最大(つまり固体中の音速が最も速く)、次いで液体、気体の順となる(つまり気体中の音速が最も遅い)。またその物質の状態(温度、密度、圧力)によっても変化し、温度は気体では正の影響を、固体では負の影響を与える。 気相中を音が伝わる場合、おおむね分子量が小さい物質ほど速い傾向を示す。たとえば、媒質が空気(平均分子量29)のときよりヘリウム(分子量4)のときの方が音速は約3倍大きく、吸入してしゃべるとかん高い声になる現象(ドナルドダック効果)が知られている(ただし、100%のヘリウムを吸入すると、窒息して危険なので、必ず空気と同等の酸素含有ヘリウム混合ガスを使用すること)。 なお、媒質中を伝わる振動の成分は、気

    音速 - Wikipedia
  • 生態学 - Wikipedia

    生態学の祖、 エルンスト・ヘッケル 生態学(せいたいがく、英語: ecology)は、生物と環境の間の相互作用を扱う学問分野である。 生物は環境に影響を与え、環境は生物に影響を与える。生態学研究の主要な関心は、生物個体の分布や数にそしてこれらがいかに環境に影響されるかにある。ここでの「環境」とは、気候や地質など非生物的な環境と生物的環境を含んでいる。 なお、生物群の名前を付けて「○○の生態」という場合、その生物に関する生態学的特徴を意味する場合もあるが、単に「生きた姿」の意味で使われる場合もある。 生態学の定義[編集] 非常に頻繁になされる定義、とくに人類生態学(英語版)で用いられる定義では、以下の三角関係についての研究が生態学とされている。 種内の個体間の関係 - 例: 1匹のウサギは他のウサギとどのように関係しているか。繁殖率が高ければ、ウサギの個体数は増加する。 種の組織的な活動 -

    生態学 - Wikipedia
  • 動的計画法 - Wikipedia

    動的計画法(どうてきけいかくほう、英: Dynamic Programming, DP)は、計算機科学の分野において、アルゴリズムの分類の1つである。対象となる問題を複数の部分問題に分割し、部分問題の計算結果の記録を利用して全体の問題を解く手法を総称してこう呼ぶ。 定義[編集] 細かくアルゴリズムが定義されているわけではなく、下記2条件を満たすアルゴリズムの総称である。 帰納的な関係の利用:より小さな問題例の解や計算結果を帰納的な関係を利用してより大きな問題例を解くのに使用する。 計算結果の記録:小さな問題例、計算結果から記録し、同じ計算を何度も行うことを避ける。帰納的な関係での参照を効率よく行うために、計算結果は整数、文字やその組みなどを見出しにして管理される。 概要[編集] 「動的計画法(dynamic programming)」という言葉は1940年代にリチャード・E・ベルマンが最初

    動的計画法 - Wikipedia
  • ホワイトノイズ - Wikipedia

    この項目では、電気工学におけるノイズの分類について説明しています。イングランドの電子音楽バンドについては「ホワイト・ノイズ (バンド)」を、映画については「ホワイト・ノイズ (映画)」を、藤原伊織の小説については「てのひらの闇」を、Official髭男dismの楽曲については「ホワイトノイズ (Official髭男dismの曲)」をご覧ください。 この記事は検証可能な参考文献や出典が全く示されていないか、不十分です。 出典を追加して記事の信頼性向上にご協力ください。(このテンプレートの使い方) 出典検索?: "ホワイトノイズ" – ニュース · 書籍 · スカラー · CiNii · J-STAGE · NDL · dlib.jp · ジャパンサーチ · TWL (2017年12月)

    ホワイトノイズ - Wikipedia
  • NP完全問題 - Wikipedia

    NP完全(な)問題(エヌピーかんぜん(な)もんだい、英: NP-complete problem)とは、(1) クラスNP(英: Non-deterministic Polynomial)に属する決定問題(言語)で、かつ (2) クラスNPに属する任意の問題から多項式時間還元(帰着)可能なもののことである。条件 (2) を満たす場合は、問題の定義が条件 (1) を満たさない場合にも、NP困難な問題とよびその計算量的な困難性を特徴づけている。多項式時間還元の推移性から、クラスNPに属する問題で、ある一つのNP完全問題から多項式時間還元可能なものも、またNP完全である。現在発見されているNP完全問題の証明の多くはこの推移性によって充足可能性問題などから導かれている。充足可能性問題がNP完全であることは1971年、スティーブン・クックによって証明され[1]、R. M. カープの定義した多項式時間

  • コンピュータ断層撮影 - Wikipedia

    CT機器 コンピュータ断層撮影(コンピュータだんそうさつえい、英: computed tomography、略称:CT)は、放射線などを利用して物体を走査しコンピュータを用いて処理することで、物体の内部構造を画像として構成する技術、あるいはそれを行うための機器。 「断層撮影」の名前のとおり、来は物体の(輪切りなどの)断面画像を得る技術であるが、これらの検査技術は単に断面画像として用いられるのみでなく、画像処理技術の向上によって任意断面画像再構成(MPR[注釈 1])や曲面を平面に投影する「カーブドMPR」(または カーブド・プレーナー・リコンストラクション)、最大値投影像(MIP[注釈 2])、サーフェスレンダリングやボリュームレンダリングなどの3次元グラフィックスとして表示されることも多くなり、画像診断技術の向上に寄与している。 広義の「CT」には、放射性同位体を投与して体内から放射さ

    コンピュータ断層撮影 - Wikipedia
  • 1