You signed in with another tab or window. Reload to refresh your session. You signed out in another tab or window. Reload to refresh your session. You switched accounts on another tab or window. Reload to refresh your session. Dismiss alert
Please note that all new project news and releases have moved to https://cascading.wensel.net The Cascading Ecosystem is a collection of applications, languages, and APIs for developing data-intensive applications. At the ecosystem core is Cascading, a Java API for defining complex data flows and integrating those flows with back-end systems, and a query planner for mapping and executing logical f
ちなみに、この分析のために必要とされるMapReduceのコードであるが、そのサイズはわずか20ステップだという。Yahoo!のプレゼンテーターである、エリック・バルデシュバイラー氏によると、たとえ経験の浅いエンジニアであっても、MapReduceによるプログラミングは可能であるとされる。 また、VISAのジョー・カニンガム氏からも、貴重なデータが提供されていたので以下に紹介する。同社では、1日に1億トランザクションが発生するため、2年間で700億強のトランザクションログが蓄積され、そのデータ量は36テラバイトに至るという。こうしたスケールのデータを、従来のRDBを用いて分析するには、約1カ月の時間が必要とされてきたが、Hadoopを用いることで13分に短縮されたという。 これまでは、Yahoo!にしろVISAにしろ、膨大なデータをRDBに押し込むほかに方法はなく、その分析に数十日を要する
Disco is a lightweight, open-source framework for distributed computing based on the MapReduce paradigm. Disco is powerful and easy to use, thanks to Python. Disco distributes and replicates your data, and schedules your jobs efficiently. Disco even includes the tools you need to index billions of data points and query them in real-time. Disco was born in Nokia Research Center in 2008 to solve rea
■HadoopDBのアーキテクチャについて HadoopDB: An Architectural Hybrid of MapReduce and DBMS Technologies for Analytical Workloads. Azza Abouzeid, Kamil Bajda-Pawlikowski, Daniel J. Abadi, Avi Silberschatz, Alex Rasin. In Proceedings of VLDB, 2009. より、 HadoopDBのアーキテクチャに関する章から、Hadoopに追加された4つのコンポーネントについて順に読んできます。 ▼Database Connector Database Connectorは、クラスタの各ノードにある個別のデータベースとTaskTrackerの間のインタフェースで、 HadoopのInputFo
"MapReduce" は Google のバックエンドで利用されている並列計算システムです。検索エンジンのインデックス作成をはじめとする、大規模な入力データに対するバッチ処理を想定して作られたシステムです。 MapReduce の面白いところは、map() と reduce() という二つの関数の組み合わせを定義するだけで、大規模データに対する様々な計算問題を解決することができる点です。 MapReduce の計算モデル map() にはその計算問題のデータとしての key-value ペアが次々に渡ってきます。map() では key-value 値のペアを異なる複数の key-value ペアに変換します。reduce() には、map() で作った key-value ペアを同一の key で束ねたものが順番に渡ってきます。その key-values ペアを任意の形式に変換すること
This is the first release of Apache Hadoop 3.4 line. It contains 2888 bug fixes, improvements and enhancements since 3.3. Users are encouraged to read the overview of major changes. For details of please check release notes and changelog. This is a release of Apache Hadoop 3.3 line. It contains 117 bug fixes, improvements and enhancements since 3.3.5. Users of Apache Hadoop 3.3.5 and earlier shoul
IBM TechXchange Community Join the Community and get 30% off the TechXchange Conference. Join / Log in Where is my content? If you’re looking for developerWorks content or a Support forum and ended up here, don't panic! You are in the right place. The content you're looking for. This page will help you find the content you are looking for, get answers to your questions, and find a new community to
リリース、障害情報などのサービスのお知らせ
最新の人気エントリーの配信
処理を実行中です
j次のブックマーク
k前のブックマーク
lあとで読む
eコメント一覧を開く
oページを開く