タグ

ブックマーク / math.nakaken88.com (2)

  • 共通テスト 数学I・数学A 2017年度プレテスト 第1問 [1] 解説 | なかけんの数学ノート

    (2) 次に、a, b の値を(1)の値のまま変えずに、c の値だけを変化させた。このときの頂点の移動について正しく述べたものを、次の 0~3 のうちから一つ選べ。 $\myBox{イ}$ 0: 最初の位置から移動しない。 1: x 軸方向に移動する。 2: y 軸方向に移動する。 3: 原点を中心として回転移動する。 (3) また、b, c の値を(1)の値のまま変えずに、a の値だけをグラフが下に凸の状態を維持するように変化させた。このとき、頂点は、 $a=\dfrac{b^2}{4c}$ のときは $\myBox{ウ}$ にあり、 それ以外のときは $\myBox{エ}$ を移動した。 $\myBox{ウ}$, $\myBox{エ}$ に当てはまるものを、次の 0~8 のうちから一つずつ選べ。ただし、同じものを選んでもよい。 0: 原点 1: x 軸上 2: y 軸上 3: 第3象限

    共通テスト 数学I・数学A 2017年度プレテスト 第1問 [1] 解説 | なかけんの数学ノート
    sso775
    sso775 2018/01/30
  • 【基本】平均値・中央値・最頻値はどう使い分ける? | なかけんの数学ノート

    主なデータの代表値に、平均値、中央値、最頻値の3つがあります。どれも、データ全体の特徴を表すものですが、どうして代表値が3つもあるのでしょうか。「1個なら覚えるのも楽なのに!」と言いたい人もいるでしょう。また、結局どれを使えばいいのかわからないという人もいるかもしれません。 ここではそういった疑問について考えていきます。3つの代表値のメリット・デメリットや、使い分けについて考えていきます。 各代表値の得意・不得意 代表値とは、データ全体の特徴を表した値のことです。平均値は、「すべての数値を足して、数値の個数で割ったもの」、中央値は、「数値を小さい方から並べたときに、真ん中に来るもの」、最頻値は、「一番個数が多いもの」です。どれも「データを特徴づける値」ですが、それぞれの代表値には、得意・不得意があります。 データが次のようにきれいな左右対称の山の形に分布していた場合は、平均値も中央値も最頻

    【基本】平均値・中央値・最頻値はどう使い分ける? | なかけんの数学ノート
  • 1