教師あり学習 概要 入力値から何かしらの予測をしたい場合を考えます. 予測する対象の正解データが事前に得られる場合、 入力値から正解データを出力するモデルを学習する手法を教師あり学習と言います. 主なタスク 何を入力して、何を出力するかでタスクが分類されます. 代表的なものに以下が挙げられます 時系列予測: 現在以前の時系列データ ⇒ 未来の時系列データ 画像分類: 画像 ⇒ ラベル 物体検出: 画像 ⇒ 物の位置と種類 セグメンテーション: 画像をピクセル単位で分割 文章分類: 文章 ⇒ ラベル 機械翻訳: ある言語の文章 ⇒ 別の言語の文章 時系列予測 現在以前のデータから将来のデータを予測します. 実用例 株価予測 災害予測 自動車の事故防止システム 主要なアルゴリズム 自己回帰モデル(AR・MA・ARMA・ARIMA) 時系列間の関係を数学的に定量化、モデル化する. 周期性のあるデ