はじめての現代制御理論 (KS理工学専門書)posted with カエレバ佐藤 和也,下本 陽一,熊澤 典良 講談社 2012-09-07 Amazonで探す楽天市場で探すYahooショッピングで探す 目次 目次 はじめに LQRの概要 PythonによるLQRの制御シミュレーション Githubリポジトリ LQRのパラメータのチューニング方法 チューニング方法1 チューニング方法2 チューニング方法3 参考資料 MyEnigma Supporters はじめに 最近、ロボットの制御や経路生成の勉強をしているのですが、 しばしば出てくる技術として、 線形二次レギュレータ(Linear-Quadratic Regulator:LQR)があります。 今回はこのLQRの概要とLQRによる 簡単なPython制御シミュレーションコードを紹介したいと思います。 LQRの概要 LQRは最適制御と呼ば
秋山です。 サービスを運営していると、いろいろなデータから必要な情報だけを取得して分析するような機会もたくさんあるかと思います。 分析に使えるツールは世の中にたくさんあるので、どれが使いやすいかは人それぞれですが、今回は「分析を始めたばかりで何をどうすればいいのかわからない…!」という方のために、Pythonを使って初心者向けのデータ分析のやり方を紹介します。 ■使用する環境 paizaでは、Pythonを使ってスキルチェック問題の回答データや、ユーザーの情報等の分析をしています。(R言語を使っていたときもありましたが、私がPythonのライブラリにある便利機能を使いたかったのと、R言語があまり得意ではなかったので移行しました) 今回は、Python3がインストール済みの環境を想定しています。これから出てくるコードもPython3を推奨しています。 下記のライブラリを使用します。 Jupy
Moving from MATLAB matrices to NumPy arrays - A Matrix Cheatsheet -- written by Sebastian Raschka on January 22, 2014 Tweet Over time Python became my favorite programming language for the quick automation of tasks, such as manipulating and analyzing data. Also, I grew fond of the great matplotlib plotting library for Python. MATLAB/Octave was usually my tool of choice when my tasks involved matr
Matplotlib: Visualization with Python Matplotlib is a comprehensive library for creating static, animated, and interactive visualizations in Python. Matplotlib makes easy things easy and hard things possible. Create publication quality plots. Make interactive figures that can zoom, pan, update. Customize visual style and layout. Export to many file formats. Embed in JupyterLab and Graphical User I
リリース、障害情報などのサービスのお知らせ
最新の人気エントリーの配信
処理を実行中です
j次のブックマーク
k前のブックマーク
lあとで読む
eコメント一覧を開く
oページを開く