タグ

ブックマーク / hacarus.github.io (1)

  • Interpretable Machine Learning

    Interpretable Machine Learning A Guide for Making Black Box Models Explainable. Christoph Molnar 2021-05-31 要約 機械学習は、製品や処理、研究を改善するための大きな可能性を秘めています。 しかし、コンピュータは通常、予測の説明をしません。これが機械学習を採用する障壁となっています。 書は、機械学習モデルや、その判断を解釈可能なものにすることについて書かれています。 解釈可能性とは何かを説明した後、決定木、決定規則、線形回帰などの単純で解釈可能なモデルについて学びます。 その後の章では、特徴量の重要度 (feature importance)やALE(accumulated local effects)や、個々の予測を説明するLIMEやシャープレイ値のようなモデルに非依存な手法(mo

    t2wave
    t2wave 2021/05/19
    機械学習モデルによる判断を、人間が解釈・説明するための手法について俯瞰的に解説する名著「解釈可能な機械学習/Interpretable Machine Learning」の日本語訳
  • 1