タグ

関連タグで絞り込む (1)

タグの絞り込みを解除

algorithmとAIに関するt_43zのブックマーク (3)

  • Winnyの金子さんのED法について | やねうら王 公式サイト

    Winnyの金子勇さんが考案された機械学習アルゴリズムED法を再現して実装した人がいていま話題になっている。 『Winny』の金子勇さんの失われたED法を求めて…いたら見つかりました https://qiita.com/kanekanekaneko/items/901ee2837401750dfdad いまから書くことは私の記憶頼りなので間違ってたらコメント欄で教えて欲しい。 1998年ごろだと思うのだが、私はWinnyの金子勇さんのホームページの熱心な読者だった。(ページも全部保存してたので私のHDDを漁れば出てくると思うが、すぐには出せない。) Winnyのβ版が発表されたのが2002年なのでそれよりはずいぶん前である。 当時、金子さんはNekoFightという3D格闘ゲームを公開されていた。そのゲームには、自動的に対戦から学習するAIが搭載されていた。 当時の金子さんのホームページの

    t_43z
    t_43z 2024/04/22
    僕にとっては WinGL と master.lib の恋塚さんだなぁ
  • 金子勇さんのED法を実装してMNISTを学習させてみた - Qiita

    最後に$f'$ですが、出力関数(活性化関数)をシグモイド関数と仮定した場合は以下です。 また各重みですが、接続元と先が同種の重みは $w^k_{ij} > 0$、異種の場合は $w^k_{ij} < 0$ の制約を持ちます。 実装 C言語の実装では各レイヤーを行列構造で保持し、リカレント型と見なして再帰的に更新しています。 この記事での実装ではTensorflowっぽくニューロンをモジュール単位として実装しました。 ニューロンのイメージは以下です。 "+"と"-"がある以外は既存のニューロンと変わりません。 コードにしかありませんが、"beta"という入力が全ニューロンに追加されていました。(多分biasと同じ効果?) また、最初の入力値は"+"と"-"に同じ値を分けて使います。(なので必ず入力は2n) 最終的な出力層は"+"ニューロンのみを使います。 1. Neuronクラス # sig

    金子勇さんのED法を実装してMNISTを学習させてみた - Qiita
  • 『Winny』の金子勇さんの失われたED法を求めて - Qiita

    結論から言うと、この記事を読んだ @pocokhc (ちぃがぅ)さんという方が金子勇さんが書いたED法のサンプルプログラムを見つけてくださいました。 ちぃがぅさんの記事はこちら 自分で解明したかったという気持ちも無いことは無いですが、バズった時点で誰かが実装してくれそうな気はしていました。新卒からIT業界に入って4年目が始まったところですが、業務以外で初めて業界にコントリビュートできた気がして嬉しいです! 追記ついでに、謝罪します。初回公開時に記事タイトル含め文中で何か所か「Winney」と書いてしまっていた箇所がありました。失礼いたしました。誤字修正してあります。指摘してくださった何人かの方に感謝申し上げます。 はじめに 今更ですが映画『winny』を見ました。 劇中で、金子勇さんのセリフにED法という聞いたことのないアルゴリズムが登場しました。 『このNekoFightにはAIを搭載

    『Winny』の金子勇さんの失われたED法を求めて - Qiita
  • 1