https://github.com/WorksApplications/Sudachi WAP NLP Tech Talk#4 Sudachi ユーザーLT大会 - co…

形態素解析は日本語処理の初歩であり、文を単語に分割したり、品詞や活用形、基本形を分析するために行います。本記事では形態素解析のツールをいくつかの出力例を交えて比較していきます。 (SentencePieceでいいじゃん、という人はお呼びでないですが、そういう方には、Twitterのトレンドが変な分割になってたら嫌では?と申し上げておきたいです) MeCab 言わずと知れた形態素解析器。とりあえずMeCabを使うという人は今なお多いことでしょう。とにかく高速であるということと、システムと辞書が分離されているのが特徴です。またPythonから使うのも簡単になりました(Janomeというものがありましたがmecab-python3の方が高速です)。Javaから使いたい人はKuromojiを使えばmecab(+ipadic)相当の結果が得られるはずです。 辞書はIPA辞書が推奨されていますが、Un
ちゃお・・・† 舞い降り・・・† 先日、前処理大全という本を読んで自分なりに何か書きたいなと思ったので、今回は自然言語処理の前処理とそのついでに素性の作り方をPythonコードとともに列挙したいと思います。必ずしも全部やる必要はないので目的に合わせて適宜使ってください。 前処理大全[データ分析のためのSQL/R/Python実践テクニック] 作者:本橋 智光技術評論社Amazon 前処理 余分な改行やスペースなどを除去 with open(path) as fd: for line in fd: line = line.rstrip() アルファベットの小文字化 text = text.lower() 正規化 (半角/全角変換などなど) import neologdn neologdn.normalize('ハンカクカナ') # => 'ハンカクカナ' neologdn.normalize
リリース、障害情報などのサービスのお知らせ
最新の人気エントリーの配信
処理を実行中です
j次のブックマーク
k前のブックマーク
lあとで読む
eコメント一覧を開く
oページを開く