ステップ1:学習すべき3要素を知るステップ2:環境構築をするステップ3:Pythonの基本を覚えるステップ4:主要なライブラリをマスターするステップ5:データ分析の一連の流れを把握し、写経するステップ6:自分で一から分析する 各ステップは、それ以前のステップで習得した要素を必要とします。そのためステップは飛ばさずに理解していく必要があります。学習を進めていく中で前のステップを再度理解し直す場合もありますが、一度学習をしたステップの内容ならば2度目はすんなりと理解できるはずです。 以下、各ステップにおける内容をコツや注意点も含めてみていきます。 DXのお悩みを解決する「DXの羅針盤」をダウンロードする ステップ1:学習すべき3要素を知る「環境構築」、「Python言語の習得」、「分析作業の理解」が、Pythonでデータ分析を始めるために必要な3要素です。 Pythonの文法ばかりを勉強してい
Photo by Samuel Mann こんにちは。谷口です。 「SQLは何となく書けるけど、DB設計はしたことない…」「DB設計について一度ちゃんと学んでおきたい…」という人は多いですよね。 DB設計とは、DBのデータモデル(DBの構成など)を作成する作業です。 DBを一から作ったり、テーブルを追加したりする際は、当然ですが「今あるデータが何となく格納できればそれでOK」ではありません。 テーブルは正規化できていないといけませんし、データの整合性も取れないといけません。また、効率よくデータが取れる構造になっているかどうかも重要です。 一から設計に取りかかるようなケースは少ないかもしれませんが、DBを取り扱うことがあるなら、こうしたDB設計の基本は知っておいて損はありません。むしろ自分が扱うDBの構造はきちんと知っておかないと、「なんか適当にSQL投げたらデータ取れたけど、正しく取れてる
はじめに 今回紹介する本は玄人向けではなく「データ分析が重要そうだけど、なんだかよくわかんないと思っている人」向けです。 昨今ではデータマイニングという単語がエンジニアやマーケティング担当者のものだけでなく、経営レイヤーでも重要視されてきています。 ビッグデータというバズワード的なものも頻繁に言われ始めて、めんどくさい上司とかはとにかく口にし出すような状況ではないでしょうか?(想像です) 勉強しないと!と思いはするものの、統計やらHadoopやらRやら、それにまつわるものが多すぎて何から手をつけていいのかわからないもの。 というわけで、私が最近読んだ中でも「何ができるものなのか」という浅く広いテーマについて触れている本をいくつか紹介します。 統計学 統計学が最強の学問である 作者:西内 啓ダイヤモンド社Amazon cakesの連載をまとめた本ですが、統計学がどういった分野に使われているの
リリース、障害情報などのサービスのお知らせ
最新の人気エントリーの配信
処理を実行中です
j次のブックマーク
k前のブックマーク
lあとで読む
eコメント一覧を開く
oページを開く