0. はじめに 1. 因果推論~施策の本当の効果~ 1.1 TVのCMを見るとアプリのプレイ時間が短くなる!? 1.2じゃぁ理想的な比較方法は? 1.3 背景要因を揃えた比較が難しい問題 1.4 反実仮想:仮に「xxxしたら / しなかったら」の効果算出 2. 傾向スコアを用いた効果測定 2.1 絶対にこの条件は守ろう ~ 「SUTVA」/「強く無視できる割り当て条件」~ 2.1.1 SUTVA 2.1.2 強く無視できる割り当て条件 2.1.3 どうやって条件が成り立ってるか確認するの? 2.2 傾向スコアとは 3. 傾向スコア算出 3.1モデリング 3.2モデルの評価 4. 傾向スコアを用いたマッチング 4.1 マッチングのお気持ち 4.2 様々なマッチング手法 4.3 マッチングのメリット / デメリット 4.4 マッチングの評価 4.5 そもそも傾向スコアをマッチングに用いるべ
主な確率分布の関連図 こんにちは、吉岡(@yoshiokatsuneo)です。 Webサービスを運営していると、利用状況を分析・予測したり、A/Bテストなどで検証したりすることがよくあります。 データを一個一個見ていてもよくわからないので、データ全体や、その背景の傾向などがまとめて見られると便利ですよね。そんなとき、データの様子を表現するためによく使われているのが「確率分布」です。 学校の試験などで使われる偏差値も、得点を正規分布でモデル化して、点数を変換したものです。 今回は、Webサービスなどでよく使われる確率分布18種類を紹介します。 それぞれ、Webサービスでの利用例やPythonでグラフを書く方法も含めて説明していきます。コードは実際にオンライン実行環境paiza.IOで実行してみることができますので、ぜひ試してみてください。 【目次】 正規分布 対数正規分布 離散一様分布 連続
import pandas as pd import numpy as np import matplotlib.pyplot as plt import seaborn as sns import json import glob import math from pathlib import Path from collections import Counter from sklearn.linear_model import LogisticRegression from sklearn.metrics import accuracy_score from sklearn.metrics import confusion_matrix from sklearn.metrics import roc_auc_score from sklearn.model_selection imp
リリース、障害情報などのサービスのお知らせ
最新の人気エントリーの配信
処理を実行中です
j次のブックマーク
k前のブックマーク
lあとで読む
eコメント一覧を開く
oページを開く