タグ

物理と数学に関するtk78のブックマーク (3)

  • 物理と数学の履修時期は常に1年すれ違っている

    物理学は常に数学の発展と共に進歩してきた。 というより物理学からの必要に駆られた要請によって新たな数学の概念が切り開かれてきた。 したがって当然、物理を学ぶ際には現象そのものの理解とその裏に潜む数学的内容の理解が両輪となるのだが、 なぜだか日の学校教育においては、この前提が上手く機能していない。 物理分野においてある現象を習ったその翌年に、ようやく数学分野において必要な概念が登場するといった具合だ。 具体的には、以下のようなものがある。 小学校6年の理科で「てこ」の法則性を学ぶ。この背景にあるはずの「反比例」の関係は中学1年の数学で習う。中学校3年の理科で力の分解を学ぶ。この背景にあるはずの「三角比」は高校1年の数学Ⅰで習う。中学校3年の理科で運動エネルギーを学ぶ。この背景にあるはずの「二次関数」は高校1年の数学Ⅰで習う。高校1年の物理基礎で等加速度運動を学ぶ。この背景にあるはずの「多項

    物理と数学の履修時期は常に1年すれ違っている
  • 大学の理工系の講義ノートPDFまとめ (数学・物理・情報・工学) - 主に言語とシステム開発に関して

    大学と大学院の,理工系の講義ノートPDFのまとめ。 PDF形式の教科書に加え,試験問題と解答,および授業の動画も集めた。 学生・社会人を問わず,ぜひ独学の勉強に役立ててほしい。 内容は随時,追加・更新される。 (※現在,60科目以上) カテゴリ別の目次: (1) 数学の講義ノート (2) 物理学の講義ノート (3) 情報科学の講義ノート (4) 工学の講義ノート ※院試の問題と解答のまとめはこちら。 (1)数学の講義ノート 解析学: 解析学の基礎 (大学1年で学ぶ,1変数と多変数の微分・積分) 複素解析・複素関数論 (函数論) ルベーグ積分 (測度論と確率論の入門) 関数解析 (Functional Analysis) 代数: 線形代数 (行列論と抽象線形代数) 群論入門・代数学 (群・環・体) 有限群論 (群の表現論) 微分方程式: 常微分方程式 (解析的および記号的な求解) 偏微分方程

    大学の理工系の講義ノートPDFまとめ (数学・物理・情報・工学) - 主に言語とシステム開発に関して
  • 世界一の天才科学者って誰?- 2ch世界ニュース (゚∀゚ )!

    1 名前:Nanashi_et_al.[] 投稿日:04/01/10 20:58 ID: 1番天才的な科学者って誰なんですか??物理・数学・生命科学・・・なんでもいいです。 123 名前:アフォ[] 投稿日:04/06/18 14:26 ID: 俺 250 名前:Nanashi_et_al.[] 投稿日:2005/07/29(金) 01:18:45 ID: 強いて挙げるならば俺かな 159 名前:Nanashi_et_al.[] 投稿日:04/07/12 14:31 ID: 俺に決まってるだろ? 352 名前:Nanashi_et_al.[sage] 投稿日:2007/08/17(金) 00:05:01 ID: 案の定「俺」と書き込む馬鹿がいるな スレタイが「世界一の馬鹿」なら同意してやる 22 名前:Nanashi_et_al.[] 投稿日:04/01/12 22:05 ID: ノイ

  • 1