分かっているようで意外と分かっていないのが回帰分析です。回帰分析の考え方をできるだけ図だけで説明した資料を作りましたので、適宜ご参照ください。 「(ほぼ)図(だけ)で説明する回帰分析」(PDF) 主な内容は、以下のとおりです。 説明変数と撹乱項の相関の理解 予測値の信頼区間をプロットすることの重要性の理解 「変数をコントロールする」ということで曖昧に理解されている内容の理解
分かっているようで意外と分かっていないのが回帰分析です。回帰分析の考え方をできるだけ図だけで説明した資料を作りましたので、適宜ご参照ください。 「(ほぼ)図(だけ)で説明する回帰分析」(PDF) 主な内容は、以下のとおりです。 説明変数と撹乱項の相関の理解 予測値の信頼区間をプロットすることの重要性の理解 「変数をコントロールする」ということで曖昧に理解されている内容の理解
世論調査などでもしばしば「層化二段無作為抽出」という言葉を目にする人は多いのではないだろうか。この手続を簡潔に説明することはなかなか難しいので、何度テキストを読んでもピンとこない、という人は意外に多いようである。その理由の一つは、「単純ランダムサンプリング(unrestricted random sampling)」を最初に説明して、それからその他の抽出法を応用として説明しようとしているからではないか、という気がする。そのせいか、一般の方の中には「母集団の正しい姿を捉えるには単純ランダム抽出が最善で、それ以外は亜流」といった考え方をしている人も多いようだ。 ところが、統計に関わる研究者のほとんどは、実際には「単純ランダム抽出は最善というよりも次善」ということを理解した上でデータを扱っている。それが一般の人には理解しにくい思考プロセスを踏まえているために、いろいろな誤解が生じているようである
リリース、障害情報などのサービスのお知らせ
最新の人気エントリーの配信
処理を実行中です
j次のブックマーク
k前のブックマーク
lあとで読む
eコメント一覧を開く
oページを開く