ChatGPT を上手く使う方法として、非常に長いプロンプトが共有されているのを見たことがある方は多いと思います。ただ、実務で使う場合長いプロンプトより短いプロンプトの方が扱いやすく API を利用する際のコストも少なく済みます。「ユーザーが作成した Excel マクロをメンテナンスしてほしい」と言われると 90% のエンジニアは不吉な予感に胃が痛くなると思いますが ( ※個人の感覚です ) 、今後誰かが生み出した長文プロンプトが業務に欠かせないものになっていて数文字変えると挙動が変わるようになっていたりしたらメンテナンスには想像を絶する苦痛が伴います。 プロンプト内の表現が性能へどのように寄与するのか計測することができれば、不要な表現を削り短くすることができます。本記事では、既存の書籍や記事をもとに期待する回答の基準点を定め、基準点よりどれだけ差異ある返答が得られたかで評価する方法を提案