ここでは、プログラムなどでよく使用されるアルゴリズムについて紹介したいと思います。 元々は、自分の頭の中を整理することを目的にこのコーナーを開設してみたのですが、最近は継続させることを目的に新しいネタを探すようになってきました。まだまだ面白いテーマがいろいろと残っているので、気力の続く限りは更新していきたいと思います。 今までに紹介したテーマに関しても、新しい内容や変更したい箇所などがたくさんあるため、新規テーマと同時進行で修正作業も行なっています。 アルゴリズムのコーナーで紹介してきたサンプル・プログラムをいくつか公開しています。「ライン・ルーチン」「円弧描画」「ペイント・ルーチン」「グラフィック・パターンの処理」「多角形の塗りつぶし」を一つにまとめた GraphicLibrary と、「確率・統計」より「一般化線形モデル」までを一つにまとめた Statistics を現在は用意していま
ここでは、プログラムなどでよく使用されるアルゴリズムについて紹介したいと思います。 こんなことやって意味あるのかどうか正直言って迷いました。プログラマはたいてい知っているような内容だし見る人もいないんじゃないかと思いましたが、これからプログラミングを始めてみようという方にとっては参考になるかもしれないし、何よりも自分にとって頭の中を整理できたりするので、これから定期的にやっていこうかと考えてます。 ところで、紹介する内容はほとんど過去に出版された書物関係から抜粋しています。一応下の方に参考文献として挙げておきますので興味を持たれた方は書店などで探してみてはいかがでしょうか? ということで、まずはライン・ルーチン(画面に直線を描画する)についての紹介です。
はじめに 本記事では、全体のサイズが最小となる算術圧縮を高速に実現するRange Coder(以下RC)を紹介します。 算術圧縮は、各文字の出現確率が分かっている場合にそのデータを最小長で表現可能な符号法です。各文字に固定の符号を割り当てるHuffman法とは違い、符号化を状態更新とみなし、すべての文字を符号し終わった後の状態を保存することで符号化を実現します。これにより1文字単位の符号長を1bitより細かく調整することが可能となります。 算術符号は圧縮率が高い反面、ビット単位の演算処理が大量に発生するため、符号化、復号化ともにHuffman符号に比べ遅いという問題点があります。今回紹介するRCは、算術符号の処理をバイト単位で行うことで高速な処理を可能にします。 また、算術圧縮については概要から説明します。 対象読者 C++の利用者を対象としています。データ圧縮の基礎を知っていることが望ま
リリース、障害情報などのサービスのお知らせ
最新の人気エントリーの配信
処理を実行中です
j次のブックマーク
k前のブックマーク
lあとで読む
eコメント一覧を開く
oページを開く