ブリストル大学の数学者Andrew Booker氏が、33を3つの立方数の合計で表すこと、すなわち33=x³+y³+z³という方程式の解を求めることに成功した。16桁(1000兆)という正と負の整数の組み合わせを効率的に探索できるアルゴリズムを開発し、(8,866,128,975,287,528)³+(-8,778,405,442,862,239)³+(-2,736,111,468,807,040)³=33であることを明らかにした。 k=x³+y³+z³の方程式を満たす3組の整数(x,y,z)を求めるという問題は、数学者たちを長年魅了し続けてきた。k=29のように解を容易に導き出せる場合や、9で除したときに4か5が余りとして残る整数、例えばk=32のように解が存在しないことが分かっている場合もあるが、大抵の場合において解は自明ではない。今のところ、解を発見する唯一の方法は、コンピューターを