はじめに ベイズ推定の概要 統計学の考え 伝統的統計学の考え ベイズの考え ベイズ統計学 ベイズ統計学の基本道具 乗法定理 独立性 加法定理 ベイズの定理 ベイズでの統計パラメータの考え方 ベイズ機械学習 機械学習で行われる基本的な仮定と学習 機械学習の方法論 MAP(最大事後確率)推定 変分ベイズ サンプリング ベイジアンが見ているもの モデルの仮定は正しかったのか? ハイパーパラメータ 全て確率変数から始める 最後に はじめに 思いの他反響のなかったベイズに関する以下の記事に続き、性懲りもなくベイズの話をします。(ディープラーニングみたいに爆発的な流行は無いけど、ベイズは今後絶対注目度が高まるよ!!) s0sem0y.hatenablog.com ベイズ推定の概要 前回はベイズがどういう考えをしていて、結果的にどういうことをしていることになるのかという話を(不正確な点も含みながら)説明