タグ

確率に関するwkmyのブックマーク (2)

  • サンクトペテルブルクのパラドックス - Wikipedia

    ダニエル・ベルヌーイ サンクトペテルブルクのパラドックス (St. Petersburg paradox) は、意思決定理論におけるパラドックスの一つである。極めて少ない確率で極めて大きな利益が得られるような事例では、期待値が発散する場合があるが、このようなときに生まれる逆説である。サンクトペテルブルクの賭け、サンクトペテルブルクの問題などとも呼ばれる。「サンクトペテルブルク」の部分は表記に揺れがある。 1738年、サンクトペテルブルクに住んでいたダニエル・ベルヌーイが、学術雑誌『ペテルブルク帝国アカデミー論集』の論文「リスクの測定に関する新しい理論」で発表した。その目的は、期待値による古典的な「公平さ」が現実には必ずしも適用できないことを示し、「効用」(ラテン語: emolumentum)についての新しい理論を展開することであった。 偏りのないコイン[注釈 1]を表が出るまで投げ続け、表

    サンクトペテルブルクのパラドックス - Wikipedia
  • ベイズの定理 - 数学・・・統計学分野

    ベイズの定理 いま、ベイズの定理が熱い。古典的確率論の一つの定理であるが、現在、検索エンジン でよく利用される Google の高いヒット率を支えたり、Intel や Microsoft におけるアプリ ケーション開発の数学的基礎として注目を集めているらしい。 どのような形でベイズの定理が応用されるのか、大いに興味があるが、浅学の身で想像 の域を越えない。ベイズの定理自身は驚くほど単純で、ある方は定理そのものは覚えなく てもいいと断言するくらい、自ら直ぐに導ける程度のものである。 ここでは、このベイズの定理について、いくつかの話題を眺めてみようと思う。 「5回に1回の割合で帽子を忘れるくせのあるK君が、正月に A、B、C 3軒を順に年始 回りをして家に帰ったとき、帽子を忘れてきたことに気がついた。2軒目の家 B に忘れて きた確率を求めよ。」 これは、以前、早稲田大学で出題された入試問題で

    wkmy
    wkmy 2011/05/24
    主観的確率について。わかりやすい。
  • 1