You signed in with another tab or window. Reload to refresh your session. You signed out in another tab or window. Reload to refresh your session. You switched accounts on another tab or window. Reload to refresh your session. Dismiss alert
はじめに 前編では MLlib で実装されている協調フィルタリングについて、アルゴリズムの面から解説してみました。 いわば理論編です。 後編は実践編として Java コードや性能評価実験の結果を見ていきます。 MLlib 協調フィルタリングの実行 MLlib の協調フィルタリング org.apache.spark.mllib.recommendation.ALS を利用する Java のコード例を以下に示します。 import org.apache.spark.api.java.JavaRDD; import org.apache.spark.mllib.recommendation.ALS; import org.apache.spark.mllib.recommendation.MatrixFactorizationModel; import org.apache.spark.mll
Apache Sparkと機械学習 当社のコラムでも既に何度か取り上げてきたが、Apache Sparkがいよいよ本格的な流行の様子を見せている。Apache Sparkは下図のようなエコシステムを持っているが、特にその中でも、Spark Streamingによるリアルタイム処理とともに、MLlibによる機械学習処理が人気を博している。日本ではHiveを用いてのバッチ処理高速化にてHadoopが広く使われるようになったが、Apache Sparkの場合は、リアルタイム処理・機械学習処理を糸口にパラダイムシフトが行われていると言っても過言ではないだろう。 (出典:Apache Spark公式サイト ) 本コラムではMLlibを用いての機械学習処理について簡単な使い方を説明するものとする。 Apache Sparkは分散メモリRDDを活用することで、特定のデータに対する繰り返し処理に向くアーキ
リリース、障害情報などのサービスのお知らせ
最新の人気エントリーの配信
処理を実行中です
j次のブックマーク
k前のブックマーク
lあとで読む
eコメント一覧を開く
oページを開く