タグ

ブックマーク / tech.preferred.jp (5)

  • Deep Learning のフレームワーク Chainer を公開しました - Preferred Networks Research & Development

    こんにちは、得居です。最近は毎晩イカになって戦場を駆けまわっています。 日、Deep Learning の新しいフレームワークである Chainer を公開しました。 Chainer 公式サイト GitHub – pfnet/chainer Chainer Documentation Chainer は、ニューラルネットを誤差逆伝播法で学習するためのフレームワークです。以下のような特徴を持っています。 Python のライブラリとして提供(要 Python 2.7+) あらゆるニューラルネットの構造に柔軟に対応 動的な計算グラフ構築による直感的なコード GPU をサポートし、複数 GPU をつかった学習も直感的に記述可能 ニューラルネットをどのように書けるか 次のコードは多層パーセプトロンの勾配を計算する例です。 from chainer import FunctionSet, Vari

    Deep Learning のフレームワーク Chainer を公開しました - Preferred Networks Research & Development
    yahihi
    yahihi 2015/06/10
  • 高速な安定ソートアルゴリズム "TimSort" の解説 - Preferred Networks Research & Development

    先日、TimSortというソートアルゴリズムが話題になりました。TimSortは、高速な安定ソートで、Python(>=2.3)やJava SE 7、およびAndroidでの標準ソートアルゴリズムとして採用されているそうです。 C++のstd::sort()よりも高速であるというベンチマーク結果1が話題になり(後にベンチマークの誤りと判明)、私もそれで存在を知りました。実際のところ、ランダムなデータに対してはクイックソート(IntroSort)ほど速くないようですが、ソートというシンプルなタスクのアルゴリズムが今もなお改良され続けていて、なおかつ人々の関心を引くというのは興味深いものです。 しかしながら、オリジナルのTimSortのコードは若干複雑で、実際のところどういうアルゴリズムなのかわかりづらいところがあると思います。そこで今回はTimSortのアルゴリズムをできるだけわかりやすく解

    高速な安定ソートアルゴリズム "TimSort" の解説 - Preferred Networks Research & Development
  • Jubatusを公開しました - Preferred Networks Research & Development

    先日、NTTと共同研究開発したJubatusを公開しました。 OSSで公開されてますので、興味がある方は使ってみるなり、ソースコードを眺めるなり、できればプロジェクトに参加していただけたらと思います。 Jubatus(ユバタス)は、大規模分散上でリアルタイムで機械学習を行うためのフレームワークです。 このプロジェクトは元々、機械学習やデータ解析が好きなPFIと、ネットワークやシステム運用実績が豊富で技術力があるNTT情報流通プラットフォーム研究所と組んで何かできないかということで始めました。 「大規模分散」+「リアルタイム」+「深い解析」という三つの特徴を持った上でデータを分析するためにどのようなアーキテクチャが考えられて、その上でどのような解析ができるのかというのを日々試行錯誤して作っています。 今回はリリース第1段ということで、手法としては分類(教師有学習の多クラス分類)に絞ってOSS

    Jubatusを公開しました - Preferred Networks Research & Development
    yahihi
    yahihi 2011/12/05
  • 文書解析のための簡潔データ構造 - Preferred Networks Research & Development

    岡野原です。 12/1〜12/2に高松で開催されたALSIP2011で文書解析のための簡潔データ構造の最近の進展について話をしてきました。 ここの業界の進展は速く毎年様々な方法が出てきますが、要点だけを上げると – Wavelet Treeがアルファベットサイズが大きい場合のRank/Select操作だけではなく、2D矩形探索、最頻要素列挙など様々な問題を効率的に解けることが分かってきて非常に重要なデータ構造であることが分かってきた。2D探索も、もはや数億 x数億とかでも解けてしまうので2D探索を利用するような様々な手法が全部現実的になった。 – Top-K Queryが盛り上がっている。検索などデータ構造に問い合わせをする際に、該当する結果を全部を列挙することの高速化は理論的にも難しいが、スコアが高い順(例えばterm frequencyやPageRankなど)にk個だけ列挙するだけなら

    文書解析のための簡潔データ構造 - Preferred Networks Research & Development
    yahihi
    yahihi 2011/12/05
  • クリエイティブなC++ライブラリ "Cinder" の紹介 - Preferred Networks Research & Development

    こんにちは、人恋しい季節になってきましたね。 研究開発チームの祢次金(@nejigane)と申します。 エントリではCinderというクリエイティブなコーディング向けのライブラリについてご紹介したいと思います。 Cinderとは Cinderとは、画像、音声、動画等を簡単に処理&可視化できる、主にビジュアルデザイン向けの強力なC++ライブラリであり、The Barbarian GroupのAndrew Bell氏が中心となってオープンソースとして開発が進められています。 同様の思想を持つProcessingやopenFrameworksによく似ており、C++で簡単に記述できるうえ、WindowsMacOSX、iOS(iPhone/iPad)といった複数のプラットフォームをカバーしています。 細かい機能/特徴の紹介は家サイトに譲るとして、Cinderを極めるとどのぐらいクリエイティブな

    クリエイティブなC++ライブラリ "Cinder" の紹介 - Preferred Networks Research & Development
  • 1