タグ

ブックマーク / hoxo-m.hatenablog.com (8)

  • ロジスティック回帰の最尤推定量にはバイアスがある - ほくそ笑む

    ロジスティック回帰について調べている。 ロジスティック回帰モデルのパラメータの最尤推定量は、不偏推定量ではなく、バイアスがある。 例として、サンプルサイズ 、入力変数の数 のときを考える。 パラメータ 300個の真の値を、最初の 100個は 、次の 100個は 、残りの 100個は に設定して推定してみよう。 n <- 1500 p <- 300 # データの生成 set.seed(314) x <- rnorm(n * p, mean = 0, sd = sqrt(1/n)) X <- matrix(x, nrow = n, ncol = p) beta <- matrix(c(rep(10, p/3), rep(-10, p/3), rep(0, p/3))) logistic <- function(t) 1 / (1 + exp(-t)) prob <- logistic(X %*

    ロジスティック回帰の最尤推定量にはバイアスがある - ほくそ笑む
  • ベイズ統計の入門書が出版ラッシュなのでまとめてみた - ほくそ笑む

    【宣伝】2016/09/14 このページに来た方へ。あなたが求めているはこれです。 StanとRでベイズ統計モデリング (Wonderful R) 作者: 松浦健太郎,石田基広出版社/メーカー: 共立出版発売日: 2016/10/25メディア: 単行この商品を含むブログ (10件) を見るまずこれを予約してから下記を読むといいです。 【宣伝終】 最近、ベイズ統計の入門書がたくさん出版されているので、ここで一旦まとめてみようと思います。 1. 基礎からのベイズ統計学: ハミルトニアンモンテカルロ法による実践的入門 (2015/6/25) 基礎からのベイズ統計学: ハミルトニアンモンテカルロ法による実践的入門 作者: 豊田秀樹出版社/メーカー: 朝倉書店発売日: 2015/06/25メディア: 単行この商品を含むブログ (6件) を見る データ分析業界ではかなり有名な豊田秀樹先生のです

    ベイズ統計の入門書が出版ラッシュなのでまとめてみた - ほくそ笑む
  • 統計的消去で擬似相関を見抜こう! - ほくそ笑む

    今日は初心者向け記事です。 はじめに ある範囲の年齢の小学生32人を無作為に選び、算数のテストを受けてもらい、さらにその身長を測定しました。 身長に対する算数の点数のグラフは次のようになりました。 なんと、身長の高い子供の方が、算数の点数が高いという結果になりました! 身長が算数の能力に関係しているなんて、すごい発見です! しかしながら、結論から言うと、この結果は間違っています。 なぜなら、抽出したのは「ある範囲の年齢の小学生」であり、年齢の高い子も低い子も含まれているからです。 年齢が高いほど算数能力は高くなり、年齢が高いほど身長も高くなることは容易に推測できます。 この関係を図で表すと次のようになります。 つまり、年齢と算数能力に相関があり、年齢と身長にも相関があるため、身長と算数能力にも見かけ上の相関が見えているのです。 このような相関を擬似相関と言います。 統計解析では、このような

    統計的消去で擬似相関を見抜こう! - ほくそ笑む
  • 小標本問題と t検定 - ほくそ笑む

    統計を学び始めると「t検定」というのが最初のほうで出てくると思います。 t検定は、20世紀前半に活躍した統計学者、ウィリアム・ゴセットによって「小標問題」というのを解決するために考案されました。 小標問題とは、正規分布の平均値の検定に正規分布を用いると、サンプルサイズが小さい場合にαエラーを過小評価してしまうという問題です。 今日はこの小標問題とそれを解決する t検定について R によるシミュレーションを使って説明してみたいと思います。 正規分布の平均値の検定 確率変数 が正規分布に従うとき、その平均値もまた、正規分布に従います。 数式で書くと、 となります。(分散が されていることに注意) なので、正規分布の平均値の検定には正規分布を使用すれば良いように思われます。 これを R でシミュレートしてみましょう。 # 正規分布を使用して平均値が 0 と等しいかの p値を求める norm

    小標本問題と t検定 - ほくそ笑む
  • 統計言語 R の公式ヘルプでさらっと目を通しておくと良いトピックまとめ - ほくそ笑む

    『アート・オブ・Rプログラミング』の日語訳が出たので早速買いました。 細かい仕様の解説が多くちりばめられていて結構いい感じです。 プログラミング初心者向けではないですが、他の言語になじんでる人が R に入門したい場合には、他の入門書よりもこっちを読んだ方が手っ取り早いのではないかと思います。 例えば、下記のように、他言語との比較による解説が各所に見られます。 他のスクリプト言語の経験がある読者は、Python での None や Perl での undefined などの「存在しない」値を知っているかもしれません。実は、R にはこのような値が2つあります。NA と NULL です。 http://www.amazon.co.jp/gp/product/4873115795 さて、今日はこのの 1.7.4 節からの話題です。 統計言語 R には、公式ヘルプが付属しており、例えば平均値を計

    統計言語 R の公式ヘルプでさらっと目を通しておくと良いトピックまとめ - ほくそ笑む
  • 「子供に解けて大人に解けない問題」を統計的に無理やり解いてみた - ほくそ笑む

    今日は、R-bloggers に面白い記事が上がっていたので、それを紹介してみようと思います。 問題 「子供にはすぐに解けて、大人にはなかなか解けない不思議な問題」をご存知でしょうか? 最近ネットで割と話題になりました。 その問題は、次のようなものです。 8809 = 6 7111 = 0 2172 = 0 6666 = 4 1111 = 0 3213 = 0 7662 = 2 9312 = 1 0000 = 4 2222 = 0 3333 = 0 5555 = 0 8193 = 3 8096 = 5 7777 = 0 9999 = 4 7756 = 1 6855 = 3 9881 = 5 5531 = 0 2581 = ? https://twitter.com/#!/yappyJP/statuses/172086299099004928 なかなか面白い問題です。 答えはここでは書きませ

    「子供に解けて大人に解けない問題」を統計的に無理やり解いてみた - ほくそ笑む
  • 主座標分析について簡単に紹介するよ! - ほくそ笑む

    今日は主座標分析(Principal Coordinate Analysis; PCoA)の紹介を簡単にしたいと思います。 主座標分析は古典的多次元尺度構成法(Classical Multidimensional Scaling; CMDS)とも呼ばれる統計解析手法です。 この解析手法を使用する主な目的は、高次元のデータを2次元や3次元に落として視覚化したいという時に使います。 以前紹介した主成分分析と同じような感じですね。*1 主成分分析との違いを簡単に言うと、主成分分析はユークリッド距離をなるべく保ちながら低次元に落とす方法ですが、主座標分析はユークリッド距離だけでなく、他の距離や類似度*2が使えるという点にあります。 例えば、ユークリッド距離の代わりに相関係数を使えば、相関の高いもの同士が近い配置になるようなプロットを作ることが可能です。 データを用意する さっそくやってみたいのです

    主座標分析について簡単に紹介するよ! - ほくそ笑む
    yamataku13
    yamataku13 2012/03/14
    あとで読む
  • 統計を学びたい人へ贈る、統計解析に使えるデータセットまとめ - ほくそ笑む

    はじめに 統計解析の手法を学ぶのに、教科書を読むのは素晴らしい学習方法です。 しかし、教科書で理論的なことを学んだだけでは、統計手法を使いこなせるようにはなりません。 統計解析手法を身につけるには、実際のデータについて手法を適用し、パラメータを変えるなどの試行錯誤を行い、結果を考察するというような経験を積むことが大切です。 それでは実際のデータをどうやって手に入れましょうか? 実験や調査をして実際のデータを得るのは大変でお金もかかります。 幸運なことに、世の中には適度なサイズの自由に使えるデータがたくさん存在します。 例えば、統計言語 R には、100以上ものデータセットがデフォルトで付属しています。 ただし、不幸なことに、それらのほとんどは英語で説明が書かれています。 英語は、いつかは乗り越えなければならない壁ですが、最初のうちはちょっと避けて通りたいところです。 というわけで、今日は、

    統計を学びたい人へ贈る、統計解析に使えるデータセットまとめ - ほくそ笑む
  • 1