2023年8月29日のブックマーク (1件)

  • LLMのファインチューニング で 何ができて 何ができないのか|npaka

    LLMのファインチューニングで何ができて、何ができないのかまとめました。 1. LLMのファインチューニングLLMのファインチューニングの目的は、「特定のアプリケーションのニーズとデータに基づいて、モデルの出力の品質を向上させること」にあります。 OpenAIのドキュメントには、次のように記述されています。 ファインチューニングは、プロンプトに収まるよりも多くの例で学習することで、Few-Shot学習を改善します。一度モデルをファインチューニングすれば、プロンプトにそれほど多くの例を提供する必要がなくなります。これにより、コストを削減し、低レイテンシのリクエストを可能にします。 しかし実際には、それよりもかなり複雑です。 LLMには「大量のデータを投げれば自動的に解決する」ような創発的な特性があるため、ファインチューニングもそのように機能すると人々は考えていますが、必ずしもそうではありませ

    LLMのファインチューニング で 何ができて 何ができないのか|npaka