タグ

関連タグで絞り込む (0)

  • 関連タグはありません

タグの絞り込みを解除

数学と教育に関するyudai214のブックマーク (2)

  • 3x5=5x3 : 404 Blog Not Found

    2010年11月16日06:30 カテゴリLoveMath 3x5=5x3 【ゆっくり理解】なぜ3×5で正答で、5×3が小2のテストでは誤答なのか | Kidsnote「皿が5皿ある。1つのお皿に3つずつりんごが載っている。全部でいくつか。」という問いに対して、5×3と式を立てるのは誤りか 正しい。誤りとするのが、誤り。 まず、「乗法の可換性に関してはまだ教えていないから、(かけられる数)×(かける数)でないと×(ばつ)」というものだが、twitterでも言った通り、可換性はまったく関係ない。 3x5=5x3問題、乗算の可換性は実は無関係であることは、分数を見ればわかる。2/3は「さんぶんのに」と日語、英語ではtwo thirds (or two over three)。非可換な除算すらこう。すなわちどちらを先に書くかというのは人間の都合であって数学の都合ではない。less than a

    3x5=5x3 : 404 Blog Not Found
    yudai214
    yudai214 2010/11/16
    こっちにコメすればよかったんですね!!!http://b.hatena.ne.jp/entry/cpplover.blogspot.com/2010/11/3x55x3.html
  • 【ゆっくり理解】なぜ3×5で正答で、5×3が誤答なのか | Kidsnote

    そういえば掛け算にはそんなルールが あったな より引用 これを受け、上記エントリーではものすごい議論の嵐。 そして下のエントリーでもかなり丁寧に解説されているにもかかわらず、議論の嵐。 黄金原更新, 【最短理解】なぜ5×3ではなく3×5なのか – ワタタツの日記!(2010-11-13) これは、おそらくいろんなことを混同したり、お互いの立場を全く理解せずに議論しているからだと思ったので、ゆっくり理解と題してそれを紐解いていこうと思います。とりあえずお約束。 教職3年目の若造です。間違ってたら謝りますが、自分なりの解釈はこれです。 指導要領自体の批判になってしまうと埒があかないのでそこはやりません。 論点 「皿が5皿ある。1つのお皿に3つずつりんごが載っている。全部でいくつか。」という問いに対して、5×3と式を立てるのは誤りか 用語の確認 まずは根的な所から確認していきましょう。 式と

  • 1