タグ

statisticsとrに関するyuichiro0526のブックマーク (10)

  • 統計的消去で擬似相関を見抜こう! - ほくそ笑む

    今日は初心者向け記事です。 はじめに ある範囲の年齢の小学生32人を無作為に選び、算数のテストを受けてもらい、さらにその身長を測定しました。 身長に対する算数の点数のグラフは次のようになりました。 なんと、身長の高い子供の方が、算数の点数が高いという結果になりました! 身長が算数の能力に関係しているなんて、すごい発見です! しかしながら、結論から言うと、この結果は間違っています。 なぜなら、抽出したのは「ある範囲の年齢の小学生」であり、年齢の高い子も低い子も含まれているからです。 年齢が高いほど算数能力は高くなり、年齢が高いほど身長も高くなることは容易に推測できます。 この関係を図で表すと次のようになります。 つまり、年齢と算数能力に相関があり、年齢と身長にも相関があるため、身長と算数能力にも見かけ上の相関が見えているのです。 このような相関を擬似相関と言います。 統計解析では、このような

    統計的消去で擬似相関を見抜こう! - ほくそ笑む
  • 一年で身に付ける!Rと統計学・機械学習の4ステップ - データサイエンティスト上がりのDX参謀・起業家

    久しぶりの投稿です。この一年間、Rの勉強会などに参加したり主催したりしてきて、後輩や勉強会の方々の話をいろいろ聞くとこができました。そんな中、一年間でRと統計学・機械学習を身に付けれるようなフローを作れるかも?と思ったので、ここで記録しておきます。統計学や機械学習は理論を勉強するだけでなく、Rで実際に解析してみることで、より理解が深まります。 ステップ1. 分布・検定 理論 統計学入門 (基礎統計学?) 作者: 東京大学教養学部統計学教室出版社/メーカー: 東京大学出版会発売日: 1991/07/09メディア: 単行購入: 158人 クリック: 3,604回この商品を含むブログ (79件) を見る R Rによるやさしい統計学 作者: 山田剛史,杉澤武俊,村井潤一郎出版社/メーカー: オーム社発売日: 2008/01/25メディア: 単行購入: 64人 クリック: 782回この商品を含

    一年で身に付ける!Rと統計学・機械学習の4ステップ - データサイエンティスト上がりのDX参謀・起業家
  • 統計を学びたい人へ贈る、統計解析に使えるデータセットまとめ - ほくそ笑む

    はじめに 統計解析の手法を学ぶのに、教科書を読むのは素晴らしい学習方法です。 しかし、教科書で理論的なことを学んだだけでは、統計手法を使いこなせるようにはなりません。 統計解析手法を身につけるには、実際のデータについて手法を適用し、パラメータを変えるなどの試行錯誤を行い、結果を考察するというような経験を積むことが大切です。 それでは実際のデータをどうやって手に入れましょうか? 実験や調査をして実際のデータを得るのは大変でお金もかかります。 幸運なことに、世の中には適度なサイズの自由に使えるデータがたくさん存在します。 例えば、統計言語 R には、100以上ものデータセットがデフォルトで付属しています。 ただし、不幸なことに、それらのほとんどは英語で説明が書かれています。 英語は、いつかは乗り越えなければならない壁ですが、最初のうちはちょっと避けて通りたいところです。 というわけで、今日は、

    統計を学びたい人へ贈る、統計解析に使えるデータセットまとめ - ほくそ笑む
  • Rが使えるフリをするための14の知識

    米国FDAで公認され、ハーバード大学やイェール大学の授業で利用されるようになり、世間での認知度が着実に上昇している統計用プログラミング環境のRだが、ユーザーなのか、ユーザーになりたいのか、ユーザーとして振舞いたいのか分からない人が増えてきた。 スノッブなユーザーとして振舞う場合は、Rの特性を語れる必要があるので、ユーザーになるよりもRへの知識や理解が必要で、実は難易度が高い行動である。それでもあえて意識の高いRユーザーとして振舞いたい人々のために、最低限求められる事のチェック・リストを用意してみた。 1. 参考文献や参考ページを押さえておく 一番大事な事だが、参考文献や参考ページを押さえておこう。公式サイトで配布されている、「R 入門」「R 言語定義」「R のデータ取り込み/出力」は持っておくべきだ。R-TipsやRjpWikiも参考になる。 2. 演算子や制御構文をマスターする 四則演算

    Rが使えるフリをするための14の知識
  • Easy PCA - 簡単に主成分分析ができるページ

    At this site, you can easily execute PCA(principal components analysis). You can try by clicking the 'Show Demo' button.

  • 主成分分析が簡単にできるサイトを作った - ほくそ笑む

    あけましておめでとうございます。 年もよろしくお願いいたします。 主成分分析 さて、昨年の終わりごろから、私は仕事で主成分分析を行っています。 主成分分析というのは、多次元のデータを情報量をなるべく落とさずに低次元に要約する手法のことです。 主成分分析は統計言語 R で簡単にできます。 例として iris データで実行してみましょう。 data(iris) data <- iris[1:4] prcomp.obj <- prcomp(data, scale=TRUE) # 主成分分析 pc1 <- prcomp.obj$x[,1] # 第一主成分得点 pc2 <- prcomp.obj$x[,2] # 第二主成分得点 label <- as.factor(iris[,5]) # 分類ラベル percent <- summary(prcomp.obj)$importance[3,2] *

    主成分分析が簡単にできるサイトを作った - ほくそ笑む
  • Rを使えるようになるための10のこと - Issei’s Analysis ~おとうさんの解析日記~

    Rは統計解析を行うことができる強力なツールです。計算上の信頼性はとても高く、世界中の分析者が日々分析用パッケージを公開しております。近年では行政機関で使われているという事例もちらほら聞きます。 ・姫路市役所での事例 これまでSASは使ってきたけどRは全く使ったことがない!JAVAとかC++とかガリガリ書けるけどRはよく分からない!という方々がすんなりRの世界に入れるよう、資料の探し場所や導入部分をまとめておきます。 ※まだ不完全ですが情報を入手し次第アップデートしていきます。 1. 資料を探す場所 CRAN R体、パッケージ、PDF資料などの置き場 Task Viewに分野ごとのまとめ Searchでパッケージや資料の検索 CRANの読み方は「しーらん」派と「くらん」派でわかれる(どっちでもいいw) Rjpwiki 日語で書かれている、これまでのRに関する資料の集大成 データの加工技、

    Rを使えるようになるための10のこと - Issei’s Analysis ~おとうさんの解析日記~
  • R による統計処理

    「Rによる統計解析」 オーム社 刊 サポートページ 目次 第1章 Rを使ってみる 第2章 データの取り扱い方 第3章 一変量統計 第4章 二変量統計 第5章 検定と推定 第6章 多変量解析 第7章 統合化された関数を利用する 第8章 データ分析の例 付録A Rの解説 付録B Rの参考図書など はじめに R とは何か,何ができるかのリンク集(日のもののみ) R を使うためにはどうしたらいいの? データなどの読み書き R の定石(R に限らずプログラミングの定石も) R を使って実際に統計解析をする AtoZ 一連の流れ データファイルの準備をする 分析してみる 分析結果を LaTeX で処理したり,ワープロに貼り込んだりする 道具立て 連続変数データをカテゴリーデータに変換 カテゴリーデータの再カテゴリー化 度数分布表と度数分布図の作成 散布図・箱髭図の描画 クロス集計(独立性の検定,フィ

  • The Comprehensive R Archive Network

    <h1>The Comprehensive R Archive Network</h1> Your browser seems not to support frames, here is the <A href="navbar.html">contents page</A> of CRAN.

  • 統計解析用フリーソフト・R-Tips

    R は有名な統計言語『 S 言語』をオープンソースとして実装し直した統計解析ソフトです.さまざまなプラットフォーム(OS)に対応しており,誰でも自由にダウンロードすることができます.それにも関わらず,世界中の専門家が開発に携わっており,日々新しい手法・アルゴリズムが付け加えられています.とにかく計算が速い上にグラフィックも充実しているので数値計算などにも持ってこいです.このドキュメントは Windows 版 R と Mac OS X 版 R(と一部 Linux 版 R )でコマンドを調べた足跡です. ちなみに,この頁の内容を新しくした書籍は こちら ,電子書籍版は こちら で販売されております.

  • 1