タグ

関連タグで絞り込む (316)

タグの絞り込みを解除

algorithmとAlgorithmに関するyukimori_726のブックマーク (473)

  • はてなブックマークFirefox拡張, JavaScript で IS 法 による Suffix Array 構築 - naoyaのはてなダイアリー

    昨日、はてなブックマークFirefox拡張をリリースしました。おかげさまでベータ版からダウンロード数は累積で1万ダウンロードを突破し、アクティブユーザー数も伸びています。 はてなブックマークFirefox拡張で新しいインターネットを体験しよう http://b.hatena.ne.jp/guide/firefox_addon 開発者の id:secondlife が g:subtech:id:secondlife:20090415:1239804170 で技術的な側面からのちょっとした TIPS なども紹介していますので、興味のある方はご一読ください。 検索では思いのほか SQLite の like 検索が高速なのに驚いた。はてブ検索では、検索ワードから URL, Title, コメント にマッチしたものを表示していて、それ専用の search_data だかかんらかの検索用カラムがある。

    はてなブックマークFirefox拡張, JavaScript で IS 法 による Suffix Array 構築 - naoyaのはてなダイアリー
  • 自然言語処理における半教師あり学習のテキスト - 武蔵野日記

    最近移動続きであまり研究に時間は割けないのだが、は読めるということでを2冊、サーベイ的な記事を3(うち2はチュートリアルスライドつき)を紹介する。まず Semisupervised Learning for Computational Linguistics (Chapman & Hall/CRC Computer Science & Data Analysis) 作者: Steven Abney出版社/メーカー: Chapman and Hall/CRC発売日: 2007/09/17メディア: ハードカバーこの商品を含むブログ (4件) を見る を読む。このの著者の Steven Abney はブートストラッピングの理論的解析をした人で、 Steven Abney. Bootstrapping. 40th Annual Meeting of the Association fo

    自然言語処理における半教師あり学習のテキスト - 武蔵野日記
  • A Large-Scale Study of Link Spam Detection by Graph Algorithms - 日々の勉強の航跡

    H. Saito, M. Toyoda, M. Kitsuregawa, K. Aihara A Large-Scale Study of Link Spam Detection by Graph Algorithms In Proceedings of 3rd International Workshop on Adversarial Information Retrieval on the Web 2007. May 論文の在処 概要 リンク構造からグラフアルゴリズムを用いてリンクファームを見つけ、分析している。 強連結成分分解、極大クリーク発見、最小カット法を用いている。 2007年の日のウェブサイトに対して実験。 1. INTRODUCTION スパマーはlink farmと呼ばれる密なリンク構造を持つサイトを利用することが多く、[8]に要約されているような様々なテクニックを使う

    A Large-Scale Study of Link Spam Detection by Graph Algorithms - 日々の勉強の航跡
  • オンラインEMアルゴリズム - DO++

    EMアルゴリズム(Expectation Maximizationアルゴリズム、期待値最大化法、以下EMと呼ぶ)は、データに観測できない隠れ変数(潜在変数)がある場合のパラメータ推定を行う時に有用な手法である。 EMは何それという人のために簡単な説明を下の方に書いたので読んでみてください。 EMのきちんとした説明なら持橋さんによる解説「自然言語処理のための変分ベイズ法」や「計算統計 I―確率計算の新しい手法 統計科学のフロンティア 11」が丁寧でわかりやすい。 EMは教師無学習では中心的な手法であり、何か観測できない変数を含めた確率モデルを作ってその確率モデルの尤度を最大化するという枠組みで、観測できなかった変数はなんだったのかを推定する場合に用いられる。 例えば自然言語処理に限っていえば文書や単語クラスタリングから、文法推定、形態素解析、機械翻訳における単語アライメントなどで使われる。

    オンラインEMアルゴリズム - DO++
  • ラムダ計算とチューリングマシンの違い 2009-04-13 - きしだのはてな

    ぼくもYコンビネータがわかるようになるまではそうだったのだけど、Yコンビネータを使うとどのような処理ができるのかがよくわからなくて悩んでいる人が多いように思う。他の人のブログを見ても、名前をつけずに再帰ができるのがすばらしいとか書いてあったりするのだけど、それによってどういう処理ができるのかわからずにいた。 結論をいえばYコンビネータには、なにかの処理を便利にする能力はない。関数であらゆる計算ができるということが示せれば、あとは用なしだ。理論の礎としてうまってしまえばいい。 結局、Yコンビネータによってどのような処理ができるかというのは、ラムダ計算の要素のメリットをチューリングマシンの中に見出そうとしてるといえる。 ラムダ計算とチューリングマシンは、どちらも計算モデルという点では一致しているけど、全く違う。 無限であるか有限かの違いといってもいい。 チューリングマシンでは、データの量と処理

    ラムダ計算とチューリングマシンの違い 2009-04-13 - きしだのはてな
  • B木 - naoyaのはてなダイアリー

    昨年から続いているアルゴリズムイントロダクション輪講も、早いもので次は18章です。18章のテーマはB木(B Tree, Bツリー) です。B木はマルチウェイ平衡木(多分木による平衡木)で、データベースやファイルシステムなどでも良く使われる重要なデータ構造です。B木は一つの木の頂点にぶら下がる枝の数の下限と上限を設けた上、常に平衡木であることを制約としたデータ構造になります。 輪講の予習がてら、B木を Python で実装してみました。ソースコードを最後に掲載します。以下は B木に関する考察です。 B木がなぜ重要なのか B木が重要なのは、B木(の変種であるB+木*1など)が二次記憶装置上で効率良く操作できるように設計されたデータ構造だからです。データベースを利用するウェブアプリケーションなど、二次記憶(ハードディスク)上の大量のデータを扱うソフトウェアを運用した経験がある方なら、いかにディ

    B木 - naoyaのはてなダイアリー
  • コサイン距離ベースのLSHをRubyで - <s>gnarl,</s>技術メモ”’<marquee><textarea>¥

    参考文献:Web+DB press vol.49 レコメンド特集のPart3など。 アルゴリズムの概要 詳細(特に数学的な)はぐぐれ。 モチベーションとしては、高次元における近傍点探索を高速で行いたい。まじめにやるとどう工夫しても計算量がすごいことになるので、近似で。 どうするかというと、「距離が近いと同じような値になるハッシュ関数」を使う。あるベクトルの近傍を求めたい場合、そのベクトルのハッシュと同じ(もしくは近い)値のハッシュを持つベクトルをテーブルから引いてきて返す。計算量がどうなるかはややこしいけど、とりあえず全部探すよりは速い。 で、どういう関数をハッシュとするのか。これは距離の定義によって異なる。ハミング距離、コサイン距離、ユークリッド距離などにはそういった関数の存在が知られている。 コサイン距離の場合、ランダムなベクトルをいくつか用意して、入力されたベクトルがそれらと似ている

    コサイン距離ベースのLSHをRubyで - <s>gnarl,</s>技術メモ”’<marquee><textarea>¥
  • Não Aqui! » 10行強で書けるロジスティック回帰モデル学習

    ロジスティック回帰(logistic regression)の学習が,確率的勾配降下法(SGD: stochastic gradient descent)を使って,非常に簡単に書けることを示すPythonコード.コメントや空行を除けば十数行です. リストの内包表記,条件演算子(Cで言う三項演算子),自動的に初期化してくれる辞書型(collections.defaultdict)は,Python以外ではあまり見ないかも知れません. リストの内包表記は,Haskell, OCaml, C#にもあるようなので,結構メジャーかも知れません. [W[x] for x in X] と書くと,「Xに含まれるすべてのxに対し,それぞれW[x]を計算した結果をリストにしたもの」という意味になります.sum関数はリストの値の和を返すので,変数aにはXとWの内積が計算されます. Pythonでは,三項演算子を条

  • PDL で PageRank - naoyaのはてなダイアリー

    id:smly さんが PageRank や HITS を Python で実装 されているのに触発されて、自分も PageRank を Perl で実装してみました。 PageRank の計算の中心になるのは Power Method (べき乗法) です。べき乗法では行列とベクトルの積を計算しますので、手軽に使える行列演算ライブラリがあると楽でしょう。 色々調べてみたところ、PDL (The Perl Data Language) が良く使われているようでしたので、これを選択しました。PDL では各種行列演算が簡単に行える他、文字列評価をオーバーライドして行列の文字列出力を良い具合で定義してくれていたりと、なかなかに便利です。PDL は行列計算以外にも色々な科学技術計算やグラフ描写などの操作をサポートしているようです。 さて、PDL を使った PageRank 計算のコードは以下のように

    PDL で PageRank - naoyaのはてなダイアリー
  • 最長共通部分列問題 (Longest Common Subsequence) - naoyaのはてなダイアリー

    部分列 (Subsequence) は系列のいくつかの要素を取り出してできた系列のことです。二つの系列の共通の部分列を共通部分列 (Common Subsecuence)と言います。共通部分列のうち、もっとも長いものを最長共通部分列 (Longest Common Subsequence, LCS) と言います。 X = <A, B, C, B, D, A, B> Y = <B, D, C, A, B, A> という二つの系列から得られる LCS は <B, C, B, A> で、その長さは 4 です。長さ 2 の<B, D> の長さ 3 の <A, B, A> なども共通部分列ですが、最長ではないのでこれらは LCS ではありません。また、LCS は最長であれば位置はどこでも良いので、この場合 <B, D, A, B> も LCS です。 LCS は動的計画法 (Dynamic Prog

    最長共通部分列問題 (Longest Common Subsequence) - naoyaのはてなダイアリー
  • 編集距離 (Levenshtein Distance) - naoyaのはてなダイアリー

    昨日 最長共通部分列問題 (LCS) について触れました。ついでなので編集距離のアルゴリズムについても整理してみます。 編集距離 (レーベンシュタイン距離, Levenshtein Distance) は二つの文字列の類似度 (異なり具合) を定量化するための数値です。文字の挿入/削除/置換で一方を他方に変形するための最小手順回数を数えたものが編集距離です。 例えば 伊藤直哉と伊藤直也 … 編集距離 1 伊藤直と伊藤直也 … 編集距離 1 佐藤直哉と伊藤直也 … 編集距離 2 佐藤B作と伊藤直也 … 編集距離 3 という具合です。 編集距離はスペルミスを修正するプログラムや、近似文字列照合 (検索対象の文書から入力文字にある程度近い部分文字列を探し出す全文検索) などで利用されます。 編集距離算出は動的計画法 (Dynamic Programming, DP) で計算することができることが

    編集距離 (Levenshtein Distance) - naoyaのはてなダイアリー
  • 自然言語処理における類似度学習(機械学習における距離学習)について - 武蔵野日記

    Twitter でグラフ理論に関する話題が上がっていたので、最近調べている距離学習(distance metric learning)について少しまとめてみる。カーネルとか距離(類似度)とかを学習するという話(カーネルというのは2点間の近さを測る関数だと思ってもらえれば)。 この分野では Liu Yang によるA comprehensive survey on distance metric learning (2005) が包括的なサーベイ論文として有名なようだが、それのアップデート(かつ簡略)版として同じ著者によるAn overview of distance metric learning (2007) が出ているので、それをさらに簡略化してお届けする(元論文自体文は3ページしかないし、引用文献のあとに表が2ページあって、それぞれ相違点と共通点がまとまっているので、これを見ると非

    自然言語処理における類似度学習(機械学習における距離学習)について - 武蔵野日記
  • ACM Sigplan Notices 29, 4 (Apr 1994), 5863.

    原文: Thermodynamics and Garbage Collection. ACM Sigplan Notices 29, 4 (Apr 1994), 58–63. Henry G. Baker Nimble Computer Corporation 16231 Meadow Ridge Way, Encino, CA 91436 (818) 986–1436 (818) 986–1360 (FAX) Copyright (c) 1993 by Nimble Computer Corporation 日語訳: 酒井 政裕 私たちは統計力学の原理とそのストレージ管理の問題への適用について議論します。 また、私たちは 情報, 状態, 可逆, 保守的 といった用語の不正確な用法による問題について指摘します。 A. はじめに 計算機科学者は抽象統計熱力学についての知識を持っている