NTT Tech Conference #2 にて話した資料 時間が足りなかったので全部は話せなかった。

世界を考察する新しい方法を手に入れたときの感覚が大好きです。特に好きなのは、いずれ具体的なコンセプトに形を変えるボンヤリとした考えがあるときです。情報理論は、その最たる例です。 情報理論は、多くの物事を説明するための正確な言葉を与えてくれます。自分はどのくらい理解できていないのか?質問Aの答えを知ることが、質問Bを答えるのにどのくらい役立つのか?ある種の信念が他の信念とどの程度似ているのか?こういうことに対し、若くて未熟なころから自分なりの考えがありましたが、情報理論に出会って正確で強固な考えとしてはっきりと固まりました。その考えは、桁外れの、例えばデータの圧縮から量子物理学や機械学習、さらにはその間に広がる数多くの分野に応用が利くものです。 残念なことに、情報理論は少々威嚇的に見えてしまうのですが、そう断定すべき根拠は全くないと思います。実際、情報理論の多くの重要な概念は完全に視覚的に説
Elasticsearchを使おうとしているとAnalyzerという概念が出てくるが、このAnalyzerという概念は最初理解することが難しかった。全文検索の仕組みを理解すれば分かるだろうと思い、https://speakerdeck.com/johtani/elasticsearchru-men?slide=5 やhttp://www.atmarkit.co.jp/ait/articles/1111/18/news148.html の記事などを読んで勉強してみたものの、こちらもいろんな言葉が出てきて非常に混乱した。例えば転置インデックス、tf-idf、トークナイズ、ストップワード、N-Gram、正規化などといった言葉が出てくる。 いろいろ調べてみて整理すると、全文検索の技術には、なぜ検索ができるかの話以外に、類似度の話、検索を高速に行うための話、あいまいな検索に対応する話など、いろんな話
Dueling Network Architectures for Deep Reinforcement Learning [arXiv:1511.06581] 概要 Dueling Network Architectures for Deep Reinforcement Learning を読んだ Double DQNにDueling Networkを組み込んだ DQN・Double DQNと比較した はじめに この論文は新しい強化学習のアルゴリズムを提案するのではなく、Q関数の内部構造に変更を加えたDueling Architectureを提案しています。 そのためQ関数を用いた強化学習全般に適用でき、導入する際のコードの変更も少なくて済みます。 Dueling Architecture まずQ関数を以下のように分解します。 \[\begin{align} Q(s,a)=\hat{V}
tl;dr 分散合意プロトコルについてサーベイしたので、メモを残す。 2PC 3PC Paxos Raft(次回) Proof of Work(次回) Proof of Stake(次回) 分散システムについては素人の筆者が書いたため誤りが多いと思うので、できれば確認のため元論文を参照してもらいたいです。 introduction 基本的な定理, 用語 CAP定理: 分散システムは、一貫性 (Consistency)、可用性 (Availability)、分断耐性 (Partition-tolerance)のうち最大でもいずれか2つしか満たすことはできない。 レプリケーション: 一貫性を保ちながら、リソース間で情報を共有すること。 RPC: プログラムであるノードから別のノード上の関数を呼び出すこと。ここでは、ノードから別のノードにメッセージを送ることという理解でもたぶん大丈夫だと思う。
Yahooの技術者が書いたブログ techblog.yahoo.co.jp が悪い方向に期待を裏切ってくれたのに対し、 @kuenishi さんがまとまった文章 kuenishi.hatenadiary.jp を書いていたので、僕も2番煎じぐらいでまとまった文章を書く。 始めに断っておくと、分散システムというのはまだまだ事例を集めていくフェーズを抜けきっておらず、体系立った大統一理論的な分類法は確立していない。ここに書くのは、これまでの分散システム事例やこれからの分散システム事例を分類していく際にその性質をカテゴライズする一助となれば良いな、程度の文章なのであまり真に受けないで欲しい。 なぜYahooの記事が期待はずれなのか 人によって意見はあるとは思うが、個人的に感じたのは以下の3つ。 分散システムのデザインパターンと銘打っておきながら並列・並行システムの分野の話からクラウド環境へとこじ
現代のコンピュータのアーキテクチャに搭載されている高速のキャッシュメモリは、 参照の局所性 に優れた(=一連のものとしてアクセスした要素が、互いに近いメモリのアドレスに配置されている)データ構造を好みます。これは、 Boost.Containerの平坦な(ツリー状ではない)連想コンテナ のようなクラスを陰で支えている理論的根拠です。要素を連続的に(かつ順序だてて)保存すると同時に、標準的なC++ノードベースの連想コンテナの機能性をエミュレートします。以下にあるのは、要素が0から30の範囲の時、 boost::container::flat_set の中で 二分探索 がどのように行われるのかを示した例です。 探索で目的の値を絞り込むにつれて、アクセスされる要素は次第に近くなっていきます。そのため、最初のうちは大きな距離を飛び越えていくような感じであっても、参照の局所性は このプロセスの最後の
図解求む。 以下「プロトコル処理」と「メッセージ処理」を分けて扱っているが、この差が顕著に出るのは全文検索エンジンや非同期ジョブサーバーなど、小さなメッセージで重い処理をするタイプ。ストリーム指向のプロトコルの場合は「プロトコル処理」を「ストリーム処理」に置き換えるといいかもしれない。 シングルスレッド・イベント駆動 コネクションN:スレッド1。epoll/kqueue/select を1つ使ってイベントループを作る。 マルチコアCPUでスケールしないので、サーバーでは今時このモデルは流行らない。 クライアントで非同期なメッセージングをやりたい場合はこのモデルを使える: サーバーにメッセージを送信 イベントハンドラを登録;このときイベントハンドラのポインタを取っておく イベントハンドラ->フラグ がONになるまでイベントループを回す イベントハンドラ->結果 を返す 1コネクション1スレッ
リリース、障害情報などのサービスのお知らせ
最新の人気エントリーの配信
処理を実行中です
j次のブックマーク
k前のブックマーク
lあとで読む
eコメント一覧を開く
oページを開く