タグ

関連タグで絞り込む (0)

  • 関連タグはありません

タグの絞り込みを解除

algorithmとmathとresearchに関するyukimori_726のブックマーク (4)

  • [機械学習] クラスタリングにおけるコサイン類似度に関する性質の証明 - tsubosakaの日記

    bayonやCLUTOが爆速な理由 - download_takeshi’s diaryを読んで、すぐには成り立つかどうか分からなかったので証明してみた。 上の記事で述べられていることはクラスタ中のベクトルとその中心ベクトルのコサイン類似度の和と、クラスタ中のベクトルを全て足したベクトルのノルムが一致するというである。 ただしここでクラスタ中の要素ベクトルはすべて大きさ1の規格化されたベクトルであるとする。 証明 今クラスタ内に含まれるベクトルを とする。 このとき全ベクトルを足しこんだ複合ベクトルを とする。またこのクラスタのセントロイドは となる。このときセントロイドと各ベクトルとのコサイン類似度は [tex: s_i = \frac{}{||C|| ||x_i||} = \frac{}{||{C}||}] となる。ここでと正規化されていることを用いた。この類似度の合計は [tex:

    [機械学習] クラスタリングにおけるコサイン類似度に関する性質の証明 - tsubosakaの日記
  • 数列データベース:On-Line Encyclopedia of Integer Sequences - 発声練習

    みなさん、あるアルゴリズムの計算量の上限値や下限値を考えているときに自分で数列の一般式を求めることありませんか?そんなあなたにJohn H. Conway and Richard K. Guy著, 根上 生也訳:数のに紹介されていました、数列データベースをご紹介いたします。 On-Line Encyclopedia of Integer Sequences この数列データベースはキーワードや数列を検索キーとして登録されているデータベースの中から検索をしてくれます。 例えば、深さnのラベルなし二分木の種類数は、`1, 3, 21, 651, 457653'という数列になります。これを検索キーとして検索すると以下のような検索結果がでます。 Number of binary trees of height n; or products (ways to insert parentheses)

    数列データベース:On-Line Encyclopedia of Integer Sequences - 発声練習
  • グラフ理論ライブラリのJGraphTを使ってみた - kaisehのブログ

    JGraphT JGraphTは、Javaのグラフライブラリです。グラフの描画ではなく、グラフ理論のモデルとアルゴリズムの方にフォーカスしています。とても使いやすかったので、紹介してみます。 無向グラフ UndirectedGraph<String, DefaultEdge> g = new SimpleGraph<String, DefaultEdge>( DefaultEdge.class); g.addVertex("a"); g.addVertex("b"); g.addVertex("c"); g.addEdge("a", "b"); g.addEdge("b", "c"); System.out.println(g.vertexSet()); System.out.println(g.edgeSet()); System.out.println(g.edgesOf("c"));

    グラフ理論ライブラリのJGraphTを使ってみた - kaisehのブログ
  • DO++: AND検索の最尤推定

    検索技術においてAND検索、つまり二つの単語を指定して、それが両方出現している文書数の推定を高速に行うのは難しい問題です。 問題を正しく書くと単語w_xが出ている文書番号(x1,x2,x3,..,xn)とw_yが出ている文書番号(y1,y2,y3,...,ym)が与えられたら | {(i,j)|x_i = y_j} | の数を求める問題です。 これは前もって全通り求めて保存しておくにも単語種類数の二乗のオーダー分必要なのでできません。 これは機械学習でも特徴関数が0/1の値しかとらないとき、二つの要素の特徴ベクトルの内積を求める問題と同じで、またデータベースでもJOINの順番を決めるときにでてくる問題です。 普通は全体の文書からサンプルをとって、その中で数えてみて、それを元のサイズにスケールさせることをします。例えば全体文書1億件の中から文書1000件だけとってきて、その中でw_xとw_y

    DO++: AND検索の最尤推定
  • 1